DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible. It is challenging due to large memory capacity and bandwidth requirements on a single compute node and high communication v...
Uloženo v:
| Vydáno v: | SC21: International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 14 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
ACM
14.11.2021
|
| Témata: | |
| ISSN: | 2167-4337 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!