Optimizing Persistent Memory Transactions

Byte-addressable, non-volatile, random access memory (NVM) has the potential to dramatically accelerate the performance of storage-intensive workloads. For applications with irregular data access patterns, and applications that rely on ad-hoc data structures, the most promising model for interacting...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / International Conference on Parallel Architectures and Compilation Techniques s. 219 - 231
Hlavní autoři: Zardoshti, Pantea, Zhou, Tingzhe, Liu, Yujie, Spear, Michael
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2019
Témata:
ISSN:2641-7936
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Byte-addressable, non-volatile, random access memory (NVM) has the potential to dramatically accelerate the performance of storage-intensive workloads. For applications with irregular data access patterns, and applications that rely on ad-hoc data structures, the most promising model for interacting with NVM is a transactional model. However, the specifics of the model matter significantly. We introduce two models for programming persistent transactions. We show how to build concurrent persistent transactional memory from traditional software transactional memories. We then introduce general and model-specific optimizations that can substantially improve the performance of persistent transactions. Our evaluation shows a substantial improvement in the both the latency and scalability of persistent transactions.
ISSN:2641-7936
DOI:10.1109/PACT.2019.00025