PROMAL: Precise Window Transition Graphs for Android via Synergy of Program Analysis and Machine Learning
Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure the correctness, security, and performance of these apps. A key component for these automated analysis techniques is to create a graphical us...
Gespeichert in:
| Veröffentlicht in: | 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE) S. 1755 - 1767 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
ACM
01.05.2022
|
| Schlagworte: | |
| ISSN: | 1558-1225 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure the correctness, security, and performance of these apps. A key component for these automated analysis techniques is to create a graphical user interface (GUI) model of an app, i.e., a window transition graph (WTG), that models windows and transitions among the windows. While existing work has provided both static and dynamic analysis to build the WTG for an app, the constructed WTG misses many transitions or contains many infeasible transitions due to the coverage issues of dynamic analysis and over-approximation of the static analysis. We propose ProMal, a "tribrid" analysis that synergistically combines static analysis, dynamic analysis, and machine learning to construct a precise WTG. Specifically, ProMal first applies static analysis to build a static WTG, and then applies dynamic analysis to verify the transitions in the static WTG. For the unverified transitions, ProMal further provides machine learning techniques that leverage runtime information (i.e., screenshots, UI layouts, and text information) to predict whether they are feasible transitions. Our evaluations on 40 real-world apps demonstrate the superiority of ProMal in building WTGs over static analysis, dynamic analysis, and machine learning techniques when they are applied separately. |
|---|---|
| AbstractList | Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure the correctness, security, and performance of these apps. A key component for these automated analysis techniques is to create a graphical user interface (GUI) model of an app, i.e., a window transition graph (WTG), that models windows and transitions among the windows. While existing work has provided both static and dynamic analysis to build the WTG for an app, the constructed WTG misses many transitions or contains many infeasible transitions due to the coverage issues of dynamic analysis and over-approximation of the static analysis. We propose ProMal, a "tribrid" analysis that synergistically combines static analysis, dynamic analysis, and machine learning to construct a precise WTG. Specifically, ProMal first applies static analysis to build a static WTG, and then applies dynamic analysis to verify the transitions in the static WTG. For the unverified transitions, ProMal further provides machine learning techniques that leverage runtime information (i.e., screenshots, UI layouts, and text information) to predict whether they are feasible transitions. Our evaluations on 40 real-world apps demonstrate the superiority of ProMal in building WTGs over static analysis, dynamic analysis, and machine learning techniques when they are applied separately. |
| Author | Wang, Hanlin Wang, Haoyu Liu, Changlin Xiao, Xusheng Ma, Yun Liu, Tianming Gu, Diandian |
| Author_xml | – sequence: 1 givenname: Changlin surname: Liu fullname: Liu, Changlin email: cxl1029@case.edu organization: Case Western Reserve University – sequence: 2 givenname: Hanlin surname: Wang fullname: Wang, Hanlin email: hxw458@case.edu organization: Case Western Reserve University – sequence: 3 givenname: Tianming surname: Liu fullname: Liu, Tianming email: Tianming.Liu@monash.edu organization: Monash University – sequence: 4 givenname: Diandian surname: Gu fullname: Gu, Diandian email: gudiandian1998@pku.edu.cn organization: Peking University – sequence: 5 givenname: Yun surname: Ma fullname: Ma, Yun email: mayun@pku.edu.cn organization: Peking University – sequence: 6 givenname: Haoyu surname: Wang fullname: Wang, Haoyu email: haoyuwang@bupt.edu.cn organization: Beijing University of Posts and Telecommunications – sequence: 7 givenname: Xusheng surname: Xiao fullname: Xiao, Xusheng email: xusheng.xiao@case.edu organization: Case Western Reserve University |
| BookMark | eNotjMtOAjEYRqvRRETWLtz0BQZ7oTd3hCiaDIEoxiX5Z9pCDbSkJZp5eyfq6izOd75rdBFTdAjdUjKmdCLuuaCEED7-JVdnaGSU7gXhhjFKz9GACqErypi4QtelfPZrOTFmgMLqdbmY1g94lV0bisMfIdr0jdcZYgmnkCKeZzjuCvYp42m0OQWLvwLgty66vO1w8n2bthkOvYZ9V0LBEC1eQLsL0eHaQY4hbm_QpYd9caN_DtH70-N69lzVy_nLbFpXwJQ4VY0AzyzXUknNhHCNI5YwR4lWSionW9kQpqQHbZlnTatarTh44YU0xBrKh-ju7zc45zbHHA6Qu41RZkKM4j8ZwVhH |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3510003.3510037 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781450392211 1450392210 |
| EISSN | 1558-1225 |
| EndPage | 1767 |
| ExternalDocumentID | 9794097 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-2046953,CNS-2028748 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .4S .DC 123 23M 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS APO ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO FEDTE I-F I07 IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS XOL |
| ID | FETCH-LOGICAL-a275t-b5af2d386768255ebe0d02e1087767e6c6b0276fa8d2f2bc7c873af5f5690d913 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832185400142&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a275t-b5af2d386768255ebe0d02e1087767e6c6b0276fa8d2f2bc7c873af5f5690d913 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9794097 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE) |
| PublicationTitleAbbrev | ICSE |
| PublicationYear | 2022 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0006499 ssj0002871777 |
| Score | 2.2421207 |
| Snippet | Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1755 |
| SubjectTerms | Analytical models Buildings deep learning Machine learning mobile apps Performance analysis Runtime Static analysis window transition graph Windows |
| Title | PROMAL: Precise Window Transition Graphs for Android via Synergy of Program Analysis and Machine Learning |
| URI | https://ieeexplore.ieee.org/document/9794097 |
| WOSCitedRecordID | wos000832185400142&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VioGpQIv4lgdG0iZObCdsCFEYaKn4EN0qxz6jLAnqF-LfY7tpERILU6LIUiI7zt27vHsP4EKFGBmhTIBRgkGieRxIIVSAJqMqy9OcmtybTYjhMB2Ps1EDLje9MIjoyWfYdaf-X76u1MKVynqZfXnCTGzBlhB81au1qae4zN9L29VfYW5T-VrKJ0pYL2aukB13_TH-7aXiQ0m_9b-H2IXOT08eGW2izR40sNyH1tqUgdR7tA3F6OlxcP1wZQc7-xwkbxZ1V5_EByXPzyJ3TqR6Rmy6ShyfsSo0WRaSPH_5PkBSGXcjx9oia8kSIktNBp53iaSWZH3vwGv_9uXmPqj9FAJJBZsHOZOG6jjlFmJYJGGXL9QhxchpAnKBXPHcglRuZKqpobkSKhWxNMwwC6F1FsUH0CyrEg-B0NQiK5NzKoVJFBMyZRZHGQtPKFIh9BG03cxNPlaSGZN60o7_vnwCO9R1FXge4Sk059MFnsG2Ws6L2fTcr_M3AXeo0w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggRTgRbxjQdG0jZOHCdsCAFFtKWCIrpVjn1GWRLUL8S_xzZpERILU6LIUiI7zt27vHsP4Fy20ddcag_9EL1QRYEnOJce6oTKJI1TqlNnNsH7_Xg0SgYVuFj1wiCiI59h0566f_mqkHNbKmsl5uVpJ3wN1q1zVtmttaqo2NzfiduV3-HIJPOlmI8fslbAbCk7aLpj8NtNxQWT29r_HmMbGj9deWSwijc7UMF8F2pLWwZS7tI6ZIOnx95V99IMtgY6SF4N7i4-iAtLjqFF7qxM9ZSYhJVYRmORKbLIBHn-dJ2ApND2Rpa3RZaiJUTkivQc8xJJKcr61oCX25vhdccrHRU8QTmbeSkTmqogjgzIMFjCLGBbtSn6VhUw4hjJKDUwNdIiVlTTVHIZ80BoppkB0Srxgz2o5kWO-0BobLCVTiMquA4l4yJmBklpA1AoUs7VAdTtzI3fv0UzxuWkHf59-Qw2O8Ned9y97z8cwRa1PQaOVXgM1dlkjiewIRezbDo5dWv-Bf1mrBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+44th+International+Conference+on+Software+Engineering+%28ICSE%29&rft.atitle=PROMAL%3A+Precise+Window+Transition+Graphs+for+Android+via+Synergy+of+Program+Analysis+and+Machine+Learning&rft.au=Liu%2C+Changlin&rft.au=Wang%2C+Hanlin&rft.au=Liu%2C+Tianming&rft.au=Gu%2C+Diandian&rft.date=2022-05-01&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=1755&rft.epage=1767&rft_id=info:doi/10.1145%2F3510003.3510037&rft.externalDocID=9794097 |