Using Machine Learning Clustering To Find Large Coverage Holes

Identifying large and important coverage holes is a time-consuming process that requires expertise in the design and its verification environment. This paper describes a novel machine learning-based technique for finding large coverage holes when the coverage events are individually defined. The tec...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD pp. 139 - 144
Main Authors: Gal, Raviv, Simchoni, Giora, Ziv, Avi
Format: Conference Proceeding
Language:English
Published: ACM 16.11.2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying large and important coverage holes is a time-consuming process that requires expertise in the design and its verification environment. This paper describes a novel machine learning-based technique for finding large coverage holes when the coverage events are individually defined. The technique is based on clustering the events according to their names and mapping the clusters into cross-products. Our proposed technique is being used in the verification of high-end servers. It has already improved the quality of coverage analysis and helped identify several environment problems.
AbstractList Identifying large and important coverage holes is a time-consuming process that requires expertise in the design and its verification environment. This paper describes a novel machine learning-based technique for finding large coverage holes when the coverage events are individually defined. The technique is based on clustering the events according to their names and mapping the clusters into cross-products. Our proposed technique is being used in the verification of high-end servers. It has already improved the quality of coverage analysis and helped identify several environment problems.
Author Gal, Raviv
Simchoni, Giora
Ziv, Avi
Author_xml – sequence: 1
  givenname: Raviv
  surname: Gal
  fullname: Gal, Raviv
  email: ravivg@il.ibm.com
  organization: IBM Research - Haifa,Haifa,Israel
– sequence: 2
  givenname: Giora
  surname: Simchoni
  fullname: Simchoni, Giora
  email: gsimchoni@gmail.com
– sequence: 3
  givenname: Avi
  surname: Ziv
  fullname: Ziv, Avi
  email: aziv@il.ibm.com
  organization: IBM Research - Haifa,Haifa,Israel
BookMark eNotjE1LAzEUACMoaGvPHrzsH9j68p29CLJYK6x4ac_lkbzUyJqVpAr-e1v0NMMcZsbO85SJsRsOS86VvpPSgVJmKZUEI_gZmx0rSKt5Zy_ZotZ3ABDOcODqit1va8r75gX9W8rUDIQln0I_ftUDlZNupmaVcmgGLHtq-umbCh5lPY1Ur9lFxLHS4p9ztl09bvp1O7w-PfcPQ4vC6kOLIQjUlivQnQ1OOyV9R8Fyr1DLoLQXLka0OkL0Rgbg3ETyKgQCC97JObv9-yYi2n2W9IHlZ9fJThkr5C-sK0dI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3380446.3430621
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1450375197
9781450375191
EndPage 144
ExternalDocumentID 9394672
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a275t-add2a57140597d85843c9ed71c4a53d45c28ffa75f0fc63d0116fec4dde070c83
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670756800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:43:00 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a275t-add2a57140597d85843c9ed71c4a53d45c28ffa75f0fc63d0116fec4dde070c83
PageCount 6
ParticipantIDs ieee_primary_9394672
PublicationCentury 2000
PublicationDate 2020-Nov.-16
PublicationDateYYYYMMDD 2020-11-16
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD
PublicationTitleAbbrev MLCAD
PublicationYear 2020
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002861014
Score 1.7612749
Snippet Identifying large and important coverage holes is a time-consuming process that requires expertise in the design and its verification environment. This paper...
SourceID ieee
SourceType Publisher
StartPage 139
SubjectTerms Analytical models
clustering
Conferences
functional coverage
hole analysis
Machine learning
Servers
Solid modeling
Title Using Machine Learning Clustering To Find Large Coverage Holes
URI https://ieeexplore.ieee.org/document/9394672
WOSCitedRecordID wos000670756800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6QePCkBozv9ODRwrJ97V68EAkHJBzQcCPddmpMDGsQ_P3OlA168OKt7aVpms6j8833MXYnfcwsxskCQIHAl2hEVWkjQjRFFtHB5Ekz8mVip9NisShnLXa_74UBgAQ-gx4NUy0_1H5LX2X9UpIgPBrcA2vNrldr_5-SF4ZkZxv2noHSfUy-qFrZkwrDYuIC_SWfkrzH6Ph_-56w7k8bHp_tHcwpa8Gqwx5SkZ8_JRAk8IYf9ZUP37fEeUDDec1HmGrzCaG8-ZBAmmg1-Ji4m7rsefQ4H45FI4IgXG71RqD9yZ0mWj0M_UOB8YL0JQQ78MppGZT2eRGjszpm0RsZqLASwSs0W_iafSHPWHtVr-Cccet8CCpUrjJBleiUvMUEBADn2nlVXrAOnX35seO5WDbHvvx7-Yod5ZR7EiTOXLP2Zr2FG3bovzZvn-vbdDnfSyyQaA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6ImuhJDRjf9uDRwtLHPi5eiATjQjig4Ua67dSYGDAI_n5nygY9ePHW9tI0TefR-eb7GLtVLiQZxskCQIPAl5iKqjKp8CHNk4AORkbNyJcyG43y6bQYN9jdthcGACL4DNo0jLV8v3Br-irrFIoE4dHg7hqtZbLp1tr-qMg8JeHZmr-nq00H0y-qV7aVxsCY2EB_CahE_9E__N_OR6z104jHx1sXc8waMG-y-1jm58MIgwReM6S-8t77mlgPaDhZ8D4m27wknDfvEUwT7QYfEHtTiz33Hya9gahlEISVmVkJtEDSGiLWw-Df5xgxKFeAz7pOW6O8Nk7mIdjMhCS4VHkqrQRwGg0XvmeXqxO2M1_M4ZTxzDrvta9slXpdoFtyGaYgADg31unijDXp7LOPDdPFrD72-d_LN2x_MBmWs_Jx9HTBDiRlogSQSy_Zzmq5hiu2575Wb5_L63hR3wAvk68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2020+ACM%2FIEEE+Workshop+on+Machine+Learning+for+CAD&rft.atitle=Using+Machine+Learning+Clustering+To+Find+Large+Coverage+Holes&rft.au=Gal%2C+Raviv&rft.au=Simchoni%2C+Giora&rft.au=Ziv%2C+Avi&rft.date=2020-11-16&rft.pub=ACM&rft.spage=139&rft.epage=144&rft_id=info:doi/10.1145%2F3380446.3430621&rft.externalDocID=9394672