Varieties of Languages in a Category

Eilenberg's variety theorem, a centerpiece of algebraic automata theory, establishes a bijective correspondence between varieties of languages and pseudovarieties of monoids. In the present paper this result is generalized to an abstract pair of algebraic categories: we introduce varieties of l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science S. 414 - 425
Hauptverfasser: Adamek, Jiri, Myers, Robert S. R., Urbat, Henning, Milius, Stefan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2015
Schlagworte:
ISSN:1043-6871
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eilenberg's variety theorem, a centerpiece of algebraic automata theory, establishes a bijective correspondence between varieties of languages and pseudovarieties of monoids. In the present paper this result is generalized to an abstract pair of algebraic categories: we introduce varieties of languages in a category C, and prove that they correspond to pseudovarieties of monoids in a closed monoidal category D, provided that C and D are dual on the level of finite objects. By suitable choices of these categories our result uniformly covers Eilenberg's theorem and three variants due to Pin, Polák and Reutenauer, respectively, and yields new Eilenberg-type correspondences.
ISSN:1043-6871
DOI:10.1109/LICS.2015.46