Varieties of Languages in a Category

Eilenberg's variety theorem, a centerpiece of algebraic automata theory, establishes a bijective correspondence between varieties of languages and pseudovarieties of monoids. In the present paper this result is generalized to an abstract pair of algebraic categories: we introduce varieties of l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science s. 414 - 425
Hlavní autoři: Adamek, Jiri, Myers, Robert S. R., Urbat, Henning, Milius, Stefan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2015
Témata:
ISSN:1043-6871
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Eilenberg's variety theorem, a centerpiece of algebraic automata theory, establishes a bijective correspondence between varieties of languages and pseudovarieties of monoids. In the present paper this result is generalized to an abstract pair of algebraic categories: we introduce varieties of languages in a category C, and prove that they correspond to pseudovarieties of monoids in a closed monoidal category D, provided that C and D are dual on the level of finite objects. By suitable choices of these categories our result uniformly covers Eilenberg's theorem and three variants due to Pin, Polák and Reutenauer, respectively, and yields new Eilenberg-type correspondences.
ISSN:1043-6871
DOI:10.1109/LICS.2015.46