Effective Lower Bounding Techniques for Pseudo-Boolean Optimization

Linear Pseudo-Boolean Optimization (PBO) is a widely used modeling framework in Electronic Design Automation (EDA). Due to significant advances in Boolean Satisfiability (SAT), new algorithms for PBO have emerged, which are effective on highly constrained instances. However, these algorithms fail to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Design, Automation and Test in Europe s. 660 - 665
Hlavní autoři: Manquinho, Vasco M., Marques-Silva, Joao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Washington, DC, USA IEEE Computer Society 07.03.2005
IEEE
Edice:ACM Conferences
Témata:
ISBN:9780769522883, 0769522882
ISSN:1530-1591
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Linear Pseudo-Boolean Optimization (PBO) is a widely used modeling framework in Electronic Design Automation (EDA). Due to significant advances in Boolean Satisfiability (SAT), new algorithms for PBO have emerged, which are effective on highly constrained instances. However, these algorithms fail to handle effectively the information provided by the cost function of PBO. This paper addresses the integration of lower bound estimation methods with SAT-related techniques in PBO solvers. Moreover, the paper shows that the utilization of lower bound estimates can dramatically improve the overall performance of PBO solvers for most existing benchmarks from EDA.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9780769522883
0769522882
ISSN:1530-1591
DOI:10.1109/DATE.2005.126