Why Are Proofs Relevant in Proof-Relevant Models?

Relational models of λ-calculus can be presented as type systems, the relational interpretation of a λ-term being given by the set of its typings. Within a distributors-induced bicategorical semantics generalizing the relational one, we identify the class of ‘categorified’ graph models and show that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on programming languages Ročník 7; číslo POPL; s. 218 - 248
Hlavní autoři: Kerinec, Axel, Manzonetto, Giulio, Olimpieri, Federico
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 09.01.2023
Témata:
ISSN:2475-1421, 2475-1421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Relational models of λ-calculus can be presented as type systems, the relational interpretation of a λ-term being given by the set of its typings. Within a distributors-induced bicategorical semantics generalizing the relational one, we identify the class of ‘categorified’ graph models and show that they can be presented as type systems as well. We prove that all the models living in this class satisfy an Approximation Theorem stating that the interpretation of a program corresponds to the filtered colimit of the denotations of its approximants. As in the relational case, the quantitative nature of our models allows to prove this property via a simple induction, rather than using impredicative techniques. Unlike relational models, our 2-dimensional graph models are also proof-relevant in the sense that the interpretation of a λ-term does not contain only its typings, but the whole type derivations. The additional information carried by a type derivation permits to reconstruct an approximant having the same type in the same environment. From this, we obtain the characterization of the theory induced by the categorified graph models as a simple corollary of the Approximation Theorem: two λ-terms have isomorphic interpretations exactly when their B'ohm trees coincide.
AbstractList Relational models of λ-calculus can be presented as type systems, the relational interpretation of a λ-term being given by the set of its typings. Within a distributors-induced bicategorical semantics generalizing the relational one, we identify the class of ‘categorified’ graph models and show that they can be presented as type systems as well. We prove that all the models living in this class satisfy an Approximation Theorem stating that the interpretation of a program corresponds to the filtered colimit of the denotations of its approximants. As in the relational case, the quantitative nature of our models allows to prove this property via a simple induction, rather than using impredicative techniques. Unlike relational models, our 2-dimensional graph models are also proof-relevant in the sense that the interpretation of a λ-term does not contain only its typings, but the whole type derivations. The additional information carried by a type derivation permits to reconstruct an approximant having the same type in the same environment. From this, we obtain the characterization of the theory induced by the categorified graph models as a simple corollary of the Approximation Theorem: two λ-terms have isomorphic interpretations exactly when their B'ohm trees coincide.
ArticleNumber 8
Author Kerinec, Axel
Manzonetto, Giulio
Olimpieri, Federico
Author_xml – sequence: 1
  givenname: Axel
  orcidid: 0000-0003-0920-8847
  surname: Kerinec
  fullname: Kerinec, Axel
  email: kerinec@lipn.univ-paris13.fr
  organization: Université Sorbonne Paris Nord, France / LIPN, France / CNRS, France
– sequence: 2
  givenname: Giulio
  orcidid: 0000-0003-1448-9014
  surname: Manzonetto
  fullname: Manzonetto, Giulio
  email: manzonetto@univ-paris13.fr
  organization: Université Sorbonne Paris Nord, France / LIPN, France / CNRS, France
– sequence: 3
  givenname: Federico
  orcidid: 0000-0003-1485-5360
  surname: Olimpieri
  fullname: Olimpieri, Federico
  email: f.olimpieri@leeds.ac.uk
  organization: University of Leeds, UK
BookMark eNpNj81LAzEQxYNUsNbi3dPePEUzk6xJTlKKX1BRRPG4TDYJVrYbSYrQ_97K1uLpDe_9GN47ZqM-9YGxUxAXAKq-lLUGFHDAxqh0zUEhjP7dR2xayqcQAqxURtoxg_ePTTXLoXrOKcVSvYQufFO_rpb9YPG985h86Mr1CTuM1JUw3emEvd3evM7v-eLp7mE-W3BCLddctt4F1DaaQCoSaXLaC-nwyhhy6LQ1XlAdbOuAjEIVASz6bVUZo_UoJ-x8-NvmVEoOsfnKyxXlTQOi-R3b7MZuybOBpHa1h_7CH40UTuM
Cites_doi 10.1016/0304-3975(87)90045-4
10.1016/S0019-9958(82)80022-3
10.1109/LICS.2017.8005093
10.1016/0168-0072(88)90025-5
10.1109/LICS.2013.36
10.4230/LIPIcs.CSL.2012.259
10.1007/s00029-017-0361-3
10.1016/S0049-237X(08)71819-6
10.1145/1922649.1922657
10.4230/LIPIcs.CSL.2021.25
10.23638/LMCS-14(3:2)2018
10.1016/j.entcs.2006.04.024
10.1007/978-3-662-54458-7_3
10.1017/S0004972700006353
10.1090/S0002-9904-1966-11611-7
10.1007/BF02483849
10.1017/CBO9780511525858
10.1017/S0960129516000396
10.1017/9781108778657
10.1137/0205036
10.1016/S0304-3975(03)00392-X
10.1016/j.entcs.2014.02.004
10.1145/3373718.3394769
10.1093/jigpal/jzx018
10.2307/2273659
10.1093/oso/9780198871378.001.0001
10.4230/LIPIcs.FSCD.2020.16
10.1017/S0960129515000377
10.1016/0168-0072(91)90065-T
10.23638/LMCS-15(1:6)2019
10.1145/3209108.3209157
10.1109/LICS52264.2021.9470617
10.1007/978-3-540-74915-8_24
10.1016/S0304-3975(96)80713-4
10.1093/logcom/14.3.373
10.1016/j.tcs.2008.06.001
10.1016/0890-5401(87)90042-3
10.1016/S0304-3975(00)00057-8
10.1112/jlms/jdm096
10.1016/j.entcs.2014.10.014
10.1109/LICS.2017.8005064
10.1017/S0960129515000316
10.1137/0205037
10.1090/memo/1184
10.1145/3158094
10.1109/LICS.2019.8785708
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3571201
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 248
ExternalDocumentID 10_1145_3571201
3571201
GroupedDBID AAKMM
AAYFX
ACM
ADPZR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
AEFXT
AEJOY
CITATION
ID FETCH-LOGICAL-a273t-3cdbe279f8ea4faa7ab7d03b2688ab2b798d0a5e9cb1a8424f1192d2473ff9d23
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910847500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1421
IngestDate Sat Nov 29 07:54:54 EST 2025
Mon Mar 17 16:30:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue POPL
Keywords Intersection Types
Approximation Theorem
Lambda calculus
Distributors
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a273t-3cdbe279f8ea4faa7ab7d03b2688ab2b798d0a5e9cb1a8424f1192d2473ff9d23
ORCID 0000-0003-1485-5360
0000-0003-1448-9014
0000-0003-0920-8847
OpenAccessLink https://dl.acm.org/doi/10.1145/3571201
PageCount 31
ParticipantIDs crossref_primary_10_1145_3571201
acm_primary_3571201
PublicationCentury 2000
PublicationDate 2023-01-09
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-09
  day: 09
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2023
Publisher ACM
Publisher_xml – name: ACM
References Flavien Breuvart, Giulio Manzonetto, and Domenico Ruoppolo. 2018. Relational Graph Models at Work. Log. Methods Comput. Sci., 14, 3 (2018), https://doi.org/10.23638/LMCS-14(3:2)2018 10.23638/LMCS-14(3:2)2018
Max Kelly. 1982. Basic Concepts of Enriched Category Theory (Lecture Notes in Mathematics, Vol. 64). Cambridge University Press, Cambridge. Republished as: Reprints in Theory and Applications of Categories, No. 10 (2005) pp. 1–136
Damiano Mazza. 2017. Polyadic Approximations in Logic and Computation. Université Sorbonne Paris Nord.
Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci., 50 (1987), 1–102.
C.-H. Luke Ong. 2017. Quantitative semantics of the lambda calculus: Some generalisations of the relational model. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005064 10.1109/LICS.2017.8005064
Philip Saville. 2020. Cartesian closed bicategories: type theory and coherence. Ph. D. Dissertation. University of Cambridge. arxiv:2007.00624.
Giulio Guerrieri and Federico Olimpieri. 2021. Categorifying Non-Idempotent Intersection Types. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), Christel Baier and Jean Goubault-Larrecq (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 183). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 25:1–25:24. isbn:978-3-95977-175-7 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CSL.2021.25 10.4230/LIPIcs.CSL.2021.25
Barney P. Hilken. 1996. Towards a proof theory of rewriting: the simply typed 2λ -calculus. Theor. Comput. Sci., 170, 1-2 (1996), 407–444. https://doi.org/10.1016/S0304-3975(96)80713-4 10.1016/S0304-3975(96)80713-4
Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. 2013. Lambda Calculus with Types. Cambridge University Press. isbn:978-0-521-76614-2 http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
Thomas Ehrhard. 2016. Call-By-Push-Value from a Linear Logic Point of View. In Programming Languages and Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 202–228. isbn:978-3-662-49498-1
Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. 2014. The Inhabitation Problem for Non-idempotent Intersection Types. In IFIP TCS (Lecture Notes in Computer Science, Vol. 8705). Springer, 341–354.
Federico Olimpieri. 2020. Intersection Types and Resource Calculi in the Denotational Semantics of Lambda-Calculus. Ph. D. Dissertation. Aix-Marseille Université.
Steffen van Bakel. 2011. Strict intersection types for the Lambda Calculus. ACM Comput. Surv., 43, 3 (2011), 20:1–20:49. https://doi.org/10.1145/1922649.1922657 10.1145/1922649.1922657
Panagis Karazeris. 2001. Categorical domain theory: Scott topology, powercategories, coherent categories.. Theory and Applications of Categories [electronic only], 9 (2001), 106–120. http://eudml.org/doc/122250
Henk P. Barendregt. 1984. The lambda-calculus, its syntax and semantics (revised ed.) (Studies in Logic and the Foundations of Mathematics). North-Holland.
Niles Johnson and Donald Yau. 2021. 2-Dimensional Categories. Oxford University Press. https://doi.org/10.1093/oso/9780198871378.001.0001 10.1093/oso/9780198871378.001.0001
Marcelo Fiore and Philip Saville. 2019. A type theory for cartesian closed bicategories (Extended Abstract). In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. 1–13. https://doi.org/10.1109/LICS.2019.8785708 10.1109/LICS.2019.8785708
André Joyal. 1986. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative. Springer Berlin Heidelberg, Berlin, Heidelberg. 126–159.
James Laird. 2017. From Qualitative to Quantitative Semantics - By Change of Base. In Foundations of Software Science and Computation Structures - 20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Javier Esparza and Andrzej S. Murawski (Eds.) (Lecture Notes in Computer Science, Vol. 10203). 36–52. https://doi.org/10.1007/978-3-662-54458-7_3 10.1007/978-3-662-54458-7_3
Fosco Loregian. 2021. (Co)end Calculus. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108778657 10.1017/9781108778657
Thomas Ehrhard. 2012. Collapsing non-idempotent intersection types. In Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012 (LIPIcs, Vol. 16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 259–273. https://doi.org/10.4230/LIPIcs.CSL.2012.259 10.4230/LIPIcs.CSL.2012.259
Daniel de Carvalho. 2007. Sémantiques de la logique linéaire. Aix-Marseille Université.
Roberto M. Amadio and Pierre-Louis Curien. 1998. Domains and Lambda-calculi. Cambridge University Press, New York, NY, USA. isbn:0-521-62277-8
Thomas Ehrhard and Laurent Regnier. 2003. The differential lambda-calculus. Theor. Comput. Sci., 309, 1-3 (2003), 1–41. https://doi.org/10.1016/S0304-3975(03)00392-X 10.1016/S0304-3975(03)00392-X
G. Maxwell Kelly. 1980. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society, 22, 1 (1980), 1–83. https://doi.org/10.1017/S0004972700006353 10.1017/S0004972700006353
Chantal Berline. 2000. From computation to foundations via functions and application: The λ -calculus and its webbed models. Theor. Comput. Sci., 249, 1 (2000), 81–161. https://doi.org/10.1016/S0304-3975(00)00057-8 10.1016/S0304-3975(00)00057-8
Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic, 48, 4 (1983), 931–940. https://doi.org/10.2307/2273659 10.2307/2273659
Benedetto Intrigila, Giulio Manzonetto, and Andrew Polonsky. 2019. Degrees of extensionality in the theory of Böhm trees and Sallé’s conjecture. Log. Methods Comput. Sci., 15, 1 (2019), https://doi.org/10.23638/LMCS-15(1:6)2019 10.23638/LMCS-15(1:6)2019
Thomas Ehrhard and Laurent Regnier. 2006. Böhm Trees, Krivine’s Machine and the Taylor Expansion of Lambda-Terms. In CiE (Lecture Notes in Computer Science, Vol. 3988). Springer, 186–197.
Bart Jacobs and Jan Rutten. 1997. A Tutorial on (Co)Algebras and (Co)Induction. EATCS Bulletin, 62 (1997), 62–222.
Erwin Engeler. 1981. Algebras and combinators. Algebra Universalis, 13, 3 (1981), 389–392.
Zeinab Galal. 2020. A Profunctorial Scott Semantics. In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020), Zena M. Ariola (Ed.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 167). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 16:1–16:18. isbn:978-3-95977-155-9 issn:1868-8969 https://doi.org/10.4230/LIPIcs.FSCD.2020.16 10.4230/LIPIcs.FSCD.2020.16
J. Martin E. Hyland. 1976. A syntactic characterization of the equality in some models for the λ -calculus. Journal London Mathematical Society (2), 12(3) (1976), 361–370.
J. Martin E. Hyland. 2017. Classical lambda calculus in modern dress. Math. Struct. Comput. Sci., 27, 5 (2017), 762–781. https://doi.org/10.1017/S0960129515000377 10.1017/S0960129515000377
Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe Longo. 1984. Extended Type Structures and Filter Lambda Models. In Logic Colloquium ’82, G. Lolli, G. Longo, and A. Marcja (Eds.) (Studies in Logic and the Foundations of Mathematics, Vol. 112). Elsevier, 241–262. https://doi.org/10.1016/S0049-237X(08)71819-6 10.1016/S0049-237X(08)71819-6
Henk P. Barendregt. 1977. The type free lambda calculus. In Handbook of Mathematical Logic, J. Barwise (Ed.) (Studies in Logic and the Foundations of Mathematics, Vol. 90). North-Holland, Amsterdam, 1091–1132.
Nicola Gambino and André Joyal. 2017. On operads, bimodules and analytic functors. Memoirs of the American Mathematical Society, 249, 1184 (2017), 9, issn:1947-6221 https://doi.org/10.1090/memo/1184 10.1090/memo/1184
Daniel de Carvalho. 2018. Execution time of λ -terms via denotational semantics and intersection types. Math. Struct. Comput. Sci., 28, 7 (2018), 1169–1203. https://doi.org/10.1017/S0960129516000396 First submitted in 2009, see abs-0905-4251 10.1017/S0960129516000396
Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. 2013. Weighted Relational Models of Typed Lambda-Calculi. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’13). IEEE Computer Society, USA. https://doi.org/10.1109/LICS.2013.36 10.1109/LICS.2013.36
Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. 1987. Type Theories, Normal Forms and D_∞ Lambda-Models. Inf. Comput., 72, 2 (1987), 85–116. https://doi.org/10.1016/0890-5401(87)90042-3 10.1016/0890-5401(87)90042-3
Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. 2018. Species, Profunctors and Taylor Expansion Weighted by SMCC: A Unified Framework for Modelling Nondeterministic, Probabilistic and Quantum Programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). 889–898. isbn:978-1-4503-5583-4 https://doi.org/10.1145/3209108.3209157 10.1145/3209108.3209157
Francis Borceux. 1994. Handbook of Categorical Algebra (Encyclopedia of Mathematics and its Applications, Vol. 1). Cambridge University Press. https://doi.org/10.1017/CBO9780511525858 10.1017/CBO9780511525858
J. Martin E. Hyland. 2014. Towards a Notion of Lambda Monoid. Electron. Notes Theor. Comput. Sci., 303 (2014), 59–77. https://doi.org/10.1016/j.entcs.2014.02.004 10.1016/j.entcs.2014.02.004
Jean-Yves Girard. 1988. Normal Functors, Power Series and Lambda-Calculus. Annals of Pure and Applied Logic, 37, 2 (1988), 129.
Robert A. G. Seely. 1987. Modelling Computations: A 2-Categorical Framework. In Proceedings of the Symposium on Lo
Barendregt Henk P. (e_1_2_1_4_1) 1977; 1132
Saville Philip (e_1_2_1_58_1) 2007
Ehrhard Thomas (e_1_2_1_20_1)
Jacobs Bart (e_1_2_1_40_1) 1997; 62
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_62_1
e_1_2_1_64_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Kelly Max (e_1_2_1_45_1) 2005
Roberto (e_1_2_1_2_1) 1998
de Carvalho Daniel (e_1_2_1_17_1) 2009
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_50_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_16_1
e_1_2_1_39_1
Seely Robert A. G. (e_1_2_1_60_1) 1987
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Karazeris Panagis (e_1_2_1_43_1) 2001
e_1_2_1_65_1
Bucciarelli Antonio (e_1_2_1_12_1) 2014; 354
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
Hyland J. Martin E. (e_1_2_1_35_1) 1976
Ehrhard Thomas (e_1_2_1_22_1) 2006; 197
Joyal André (e_1_2_1_42_1)
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
Benabou J. (e_1_2_1_7_1)
Barendregt Hendrik Pieter (e_1_2_1_6_1)
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Thomas Ehrhard and Laurent Regnier. 2006. Böhm Trees, Krivine’s Machine and the Taylor Expansion of Lambda-Terms. In CiE (Lecture Notes in Computer Science, Vol. 3988). Springer, 186–197.
– reference: Giulio Manzonetto and Domenico Ruoppolo. 2014. Relational Graph Models, Taylor Expansion and Extensionality. In Proceedings of the 30th Conference on the Mathematical Foundations of Programming Semantics, MFPS 2014, Ithaca, NY, USA, June 12-15, 2014, Bart Jacobs, Alexandra Silva, and Sam Staton (Eds.) (Electronic Notes in Theoretical Computer Science, Vol. 308). Elsevier, 245–272. https://doi.org/10.1016/j.entcs.2014.10.014 10.1016/j.entcs.2014.10.014
– reference: G. Maxwell Kelly. 1980. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society, 22, 1 (1980), 1–83. https://doi.org/10.1017/S0004972700006353 10.1017/S0004972700006353
– reference: Robert A. G. Seely. 1987. Modelling Computations: A 2-Categorical Framework. In Proceedings of the Symposium on Logic in Computer Science (LICS ’87), Ithaca, New York, USA, June 22-25, 1987. IEEE Computer Society, 65–71.
– reference: Daniel de Carvalho. 2018. Execution time of λ -terms via denotational semantics and intersection types. Math. Struct. Comput. Sci., 28, 7 (2018), 1169–1203. https://doi.org/10.1017/S0960129516000396 First submitted in 2009, see abs-0905-4251 10.1017/S0960129516000396
– reference: Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. 1987. Type Theories, Normal Forms and D_∞ Lambda-Models. Inf. Comput., 72, 2 (1987), 85–116. https://doi.org/10.1016/0890-5401(87)90042-3 10.1016/0890-5401(87)90042-3
– reference: Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. 2013. Lambda Calculus with Types. Cambridge University Press. isbn:978-0-521-76614-2 http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
– reference: Thomas Ehrhard. 2012. Collapsing non-idempotent intersection types. In Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012 (LIPIcs, Vol. 16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 259–273. https://doi.org/10.4230/LIPIcs.CSL.2012.259 10.4230/LIPIcs.CSL.2012.259
– reference: Jean-Yves Girard. 1988. Normal Functors, Power Series and Lambda-Calculus. Annals of Pure and Applied Logic, 37, 2 (1988), 129.
– reference: Steffen van Bakel. 2011. Strict intersection types for the Lambda Calculus. ACM Comput. Surv., 43, 3 (2011), 20:1–20:49. https://doi.org/10.1145/1922649.1922657 10.1145/1922649.1922657
– reference: J. Martin E. Hyland, Misao Nagayama, John Power, and Giuseppe Rosolini. 2006. A Category Theoretic Formulation for Engeler-style Models of the Untyped Lambda Calculus. Electron. Notes Theor. Comput. Sci., 161 (2006), 43–57. https://doi.org/10.1016/j.entcs.2006.04.024 10.1016/j.entcs.2006.04.024
– reference: Samson Abramsky. 1991. Domain theory in logical form. Annals of Pure and Applied Logic, 51, 1 (1991), 1–77. issn:0168-0072 https://doi.org/10.1016/0168-0072(91)90065-T 10.1016/0168-0072(91)90065-T
– reference: Francis Borceux. 1994. Handbook of Categorical Algebra (Encyclopedia of Mathematics and its Applications, Vol. 1). Cambridge University Press. https://doi.org/10.1017/CBO9780511525858 10.1017/CBO9780511525858
– reference: Erwin Engeler. 1981. Algebras and combinators. Algebra Universalis, 13, 3 (1981), 389–392.
– reference: Niles Johnson and Donald Yau. 2021. 2-Dimensional Categories. Oxford University Press. https://doi.org/10.1093/oso/9780198871378.001.0001 10.1093/oso/9780198871378.001.0001
– reference: Roberto M. Amadio and Pierre-Louis Curien. 1998. Domains and Lambda-calculi. Cambridge University Press, New York, NY, USA. isbn:0-521-62277-8
– reference: Henk P. Barendregt. 1977. The type free lambda calculus. In Handbook of Mathematical Logic, J. Barwise (Ed.) (Studies in Logic and the Foundations of Mathematics, Vol. 90). North-Holland, Amsterdam, 1091–1132.
– reference: Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. 2018. Species, Profunctors and Taylor Expansion Weighted by SMCC: A Unified Framework for Modelling Nondeterministic, Probabilistic and Quantum Programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). 889–898. isbn:978-1-4503-5583-4 https://doi.org/10.1145/3209108.3209157 10.1145/3209108.3209157
– reference: Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. 2007. Not Enough Points Is Enough. In Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, Jacques Duparc and Thomas A. Henzinger (Eds.) (Lecture Notes in Computer Science, Vol. 4646). Springer, 298–312. https://doi.org/10.1007/978-3-540-74915-8_24 10.1007/978-3-540-74915-8_24
– reference: Benedetto Intrigila, Giulio Manzonetto, and Andrew Polonsky. 2019. Degrees of extensionality in the theory of Böhm trees and Sallé’s conjecture. Log. Methods Comput. Sci., 15, 1 (2019), https://doi.org/10.23638/LMCS-15(1:6)2019 10.23638/LMCS-15(1:6)2019
– reference: Federico Olimpieri. 2020. Intersection Types and Resource Calculi in the Denotational Semantics of Lambda-Calculus. Ph. D. Dissertation. Aix-Marseille Université.
– reference: Barney P. Hilken. 1996. Towards a proof theory of rewriting: the simply typed 2λ -calculus. Theor. Comput. Sci., 170, 1-2 (1996), 407–444. https://doi.org/10.1016/S0304-3975(96)80713-4 10.1016/S0304-3975(96)80713-4
– reference: Nicola Gambino and André Joyal. 2017. On operads, bimodules and analytic functors. Memoirs of the American Mathematical Society, 249, 1184 (2017), 9, issn:1947-6221 https://doi.org/10.1090/memo/1184 10.1090/memo/1184
– reference: Stefania Lusin and Antonino Salibra. 2004. The Lattice of Lambda Theories. J. Log. Comput., 14, 3 (2004), 373–394.
– reference: William W. Tait. 1966. A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic. Bull. Amer. Math. Soc., 72 (1966), 980–983.
– reference: Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. 2008. The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society, 77, 1 (2008), 203––220. https://doi.org/10.1112/jlms/jdm096 10.1112/jlms/jdm096
– reference: Federico Olimpieri. 2021. Intersection Type Distributors. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–15. https://doi.org/10.1109/LICS52264.2021.9470617 10.1109/LICS52264.2021.9470617
– reference: Daniel de Carvalho. 2009. Execution Time of λ -Terms via Denotational Semantics and Intersection Types. CoRR, abs/0905.4251 (2009), arXiv:0905.4251. arxiv:0905.4251
– reference: Daniel de Carvalho. 2007. Sémantiques de la logique linéaire. Aix-Marseille Université.
– reference: C.-H. Luke Ong. 2017. Quantitative semantics of the lambda calculus: Some generalisations of the relational model. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005064 10.1109/LICS.2017.8005064
– reference: Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic, 48, 4 (1983), 931–940. https://doi.org/10.2307/2273659 10.2307/2273659
– reference: Bart Jacobs and Jan Rutten. 1997. A Tutorial on (Co)Algebras and (Co)Induction. EATCS Bulletin, 62 (1997), 62–222.
– reference: André Joyal. 1986. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative. Springer Berlin Heidelberg, Berlin, Heidelberg. 126–159.
– reference: Marcelo Fiore and Philip Saville. 2020. Coherence and Normalisation-by-Evaluation for Bicategorical Cartesian Closed Structure. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). Association for Computing Machinery, New York, NY, USA. 425–439. https://doi.org/10.1145/3373718.3394769 10.1145/3373718.3394769
– reference: Thomas Ehrhard and Laurent Regnier. 2003. The differential lambda-calculus. Theor. Comput. Sci., 309, 1-3 (2003), 1–41. https://doi.org/10.1016/S0304-3975(03)00392-X 10.1016/S0304-3975(03)00392-X
– reference: Giulio Guerrieri and Federico Olimpieri. 2021. Categorifying Non-Idempotent Intersection Types. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), Christel Baier and Jean Goubault-Larrecq (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 183). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 25:1–25:24. isbn:978-3-95977-175-7 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CSL.2021.25 10.4230/LIPIcs.CSL.2021.25
– reference: Simona Ronchi Della Rocca. 1982. Characterization Theorems for a Filter Lambda Model. Inf. Control., 54, 3 (1982), 201–216. https://doi.org/10.1016/S0019-9958(82)80022-3 10.1016/S0019-9958(82)80022-3
– reference: Henk P. Barendregt. 1984. The lambda-calculus, its syntax and semantics (revised ed.) (Studies in Logic and the Foundations of Mathematics). North-Holland.
– reference: J. Benabou. 1973. Les distributeurs: d’après le cours de Questions spéciales de mathématique. Institut de mathématique pure et appliquée, Université catholique de Louvain. https://books.google.fr/books?id=XiauHAAACAAJ
– reference: Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. 2017. Non-idempotent intersection types for the Lambda-Calculus. Log. J. IGPL, 25, 4 (2017), 431–464. https://doi.org/10.1093/jigpal/jzx018 10.1093/jigpal/jzx018
– reference: Thomas Ehrhard. 2016. Call-By-Push-Value from a Linear Logic Point of View. In Programming Languages and Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 202–228. isbn:978-3-662-49498-1
– reference: Thomas Ehrhard and Laurent Regnier. 2008. Uniformity and the Taylor expansion of ordinary λ -terms. Theor. Comput. Sci., 403, 2-3 (2008), 347–372. https://doi.org/10.1016/j.tcs.2008.06.001 10.1016/j.tcs.2008.06.001
– reference: Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci., 50 (1987), 1–102.
– reference: Zeinab Galal. 2020. A Profunctorial Scott Semantics. In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020), Zena M. Ariola (Ed.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 167). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 16:1–16:18. isbn:978-3-95977-155-9 issn:1868-8969 https://doi.org/10.4230/LIPIcs.FSCD.2020.16 10.4230/LIPIcs.FSCD.2020.16
– reference: J. Martin E. Hyland. 1976. A syntactic characterization of the equality in some models for the λ -calculus. Journal London Mathematical Society (2), 12(3) (1976), 361–370.
– reference: Damiano Mazza, Luc Pellissier, and Pierre Vial. 2018. Polyadic approximations, fibrations and intersection types. Proc. ACM Program. Lang., 2, POPL, 6:1–6:28. https://doi.org/10.1145/3158094 10.1145/3158094
– reference: Damiano Mazza. 2017. Polyadic Approximations in Logic and Computation. Université Sorbonne Paris Nord.
– reference: Max Kelly. 1982. Basic Concepts of Enriched Category Theory (Lecture Notes in Mathematics, Vol. 64). Cambridge University Press, Cambridge. Republished as: Reprints in Theory and Applications of Categories, No. 10 (2005) pp. 1–136
– reference: Chantal Berline. 2000. From computation to foundations via functions and application: The λ -calculus and its webbed models. Theor. Comput. Sci., 249, 1 (2000), 81–161. https://doi.org/10.1016/S0304-3975(00)00057-8 10.1016/S0304-3975(00)00057-8
– reference: J. Martin E. Hyland. 2014. Towards a Notion of Lambda Monoid. Electron. Notes Theor. Comput. Sci., 303 (2014), 59–77. https://doi.org/10.1016/j.entcs.2014.02.004 10.1016/j.entcs.2014.02.004
– reference: J. Martin E. Hyland. 2017. Classical lambda calculus in modern dress. Math. Struct. Comput. Sci., 27, 5 (2017), 762–781. https://doi.org/10.1017/S0960129515000377 10.1017/S0960129515000377
– reference: Dana S. Scott. 1976. Data Types as Lattices. SIAM J. Comput., 5, 3 (1976), 522–587. https://doi.org/10.1137/0205037 10.1137/0205037
– reference: Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. 2017. Generalised Species of Rigid Resource Terms. In Proceedings of the 32rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017). https://doi.org/10.1109/LICS.2017.8005093 10.1109/LICS.2017.8005093
– reference: James Laird. 2017. From Qualitative to Quantitative Semantics - By Change of Base. In Foundations of Software Science and Computation Structures - 20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Javier Esparza and Andrzej S. Murawski (Eds.) (Lecture Notes in Computer Science, Vol. 10203). 36–52. https://doi.org/10.1007/978-3-662-54458-7_3 10.1007/978-3-662-54458-7_3
– reference: Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. 2017. Relative pseudomonads, Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica, 24, 3 (2017), 11, 2791–2830. issn:1420-9020 https://doi.org/10.1007/s00029-017-0361-3 10.1007/s00029-017-0361-3
– reference: Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. 2014. The Inhabitation Problem for Non-idempotent Intersection Types. In IFIP TCS (Lecture Notes in Computer Science, Vol. 8705). Springer, 341–354.
– reference: Christopher P. Wadsworth. 1976. The Relation Between Computational and Denotational Properties for Scott’s D_∞ -Models of the Lambda-Calculus. SIAM J. Comput., 5, 3 (1976), 488–521. https://doi.org/10.1137/0205036 10.1137/0205036
– reference: Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. 2013. Weighted Relational Models of Typed Lambda-Calculi. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’13). IEEE Computer Society, USA. https://doi.org/10.1109/LICS.2013.36 10.1109/LICS.2013.36
– reference: Flavien Breuvart, Giulio Manzonetto, and Domenico Ruoppolo. 2018. Relational Graph Models at Work. Log. Methods Comput. Sci., 14, 3 (2018), https://doi.org/10.23638/LMCS-14(3:2)2018 10.23638/LMCS-14(3:2)2018
– reference: Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. 2017. Essential and relational models. Math. Struct. Comput. Sci., 27, 5 (2017), 626–650. https://doi.org/10.1017/S0960129515000316 10.1017/S0960129515000316
– reference: Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe Longo. 1984. Extended Type Structures and Filter Lambda Models. In Logic Colloquium ’82, G. Lolli, G. Longo, and A. Marcja (Eds.) (Studies in Logic and the Foundations of Mathematics, Vol. 112). Elsevier, 241–262. https://doi.org/10.1016/S0049-237X(08)71819-6 10.1016/S0049-237X(08)71819-6
– reference: Fosco Loregian. 2021. (Co)end Calculus. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108778657 10.1017/9781108778657
– reference: Marcelo Fiore and Philip Saville. 2019. A type theory for cartesian closed bicategories (Extended Abstract). In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. 1–13. https://doi.org/10.1109/LICS.2019.8785708 10.1109/LICS.2019.8785708
– reference: Panagis Karazeris. 2001. Categorical domain theory: Scott topology, powercategories, coherent categories.. Theory and Applications of Categories [electronic only], 9 (2001), 106–120. http://eudml.org/doc/122250
– reference: Philip Saville. 2020. Cartesian closed bicategories: type theory and coherence. Ph. D. Dissertation. University of Cambridge. arxiv:2007.00624.
– volume-title: Combinatoire énumérative
  ident: e_1_2_1_42_1
– ident: e_1_2_1_31_1
  doi: 10.1016/0304-3975(87)90045-4
– ident: e_1_2_1_57_1
  doi: 10.1016/S0019-9958(82)80022-3
– ident: e_1_2_1_62_1
  doi: 10.1109/LICS.2017.8005093
– ident: e_1_2_1_51_1
– ident: e_1_2_1_32_1
  doi: 10.1016/0168-0072(88)90025-5
– ident: e_1_2_1_47_1
  doi: 10.1109/LICS.2013.36
– volume: 197
  volume-title: Krivine’s Machine and the Taylor Expansion of Lambda-Terms. In CiE (Lecture Notes in Computer Science
  year: 2006
  ident: e_1_2_1_22_1
– volume-title: Proceedings of the Symposium on Logic in Computer Science (LICS ’87)
  year: 1987
  ident: e_1_2_1_60_1
– ident: e_1_2_1_19_1
  doi: 10.4230/LIPIcs.CSL.2012.259
– ident: e_1_2_1_26_1
  doi: 10.1007/s00029-017-0361-3
– ident: e_1_2_1_14_1
  doi: 10.1016/S0049-237X(08)71819-6
– ident: e_1_2_1_64_1
  doi: 10.1145/1922649.1922657
– ident: e_1_2_1_33_1
  doi: 10.4230/LIPIcs.CSL.2021.25
– ident: e_1_2_1_10_1
  doi: 10.23638/LMCS-14(3:2)2018
– ident: e_1_2_1_38_1
  doi: 10.1016/j.entcs.2006.04.024
– ident: e_1_2_1_46_1
  doi: 10.1007/978-3-662-54458-7_3
– ident: e_1_2_1_44_1
  doi: 10.1017/S0004972700006353
– ident: e_1_2_1_53_1
– ident: e_1_2_1_61_1
  doi: 10.1090/S0002-9904-1966-11611-7
– ident: e_1_2_1_24_1
  doi: 10.1007/BF02483849
– ident: e_1_2_1_9_1
  doi: 10.1017/CBO9780511525858
– ident: e_1_2_1_18_1
  doi: 10.1017/S0960129516000396
– ident: e_1_2_1_48_1
  doi: 10.1017/9781108778657
– ident: e_1_2_1_65_1
  doi: 10.1137/0205036
– volume-title: Execution Time of λ -Terms via Denotational Semantics and Intersection Types. CoRR, abs/0905.4251
  year: 2009
  ident: e_1_2_1_17_1
– ident: e_1_2_1_21_1
  doi: 10.1016/S0304-3975(03)00392-X
– ident: e_1_2_1_36_1
  doi: 10.1016/j.entcs.2014.02.004
– ident: e_1_2_1_28_1
  doi: 10.1145/3373718.3394769
– ident: e_1_2_1_13_1
  doi: 10.1093/jigpal/jzx018
– ident: e_1_2_1_3_1
  doi: 10.2307/2273659
– ident: e_1_2_1_5_1
– volume-title: Les distributeurs: d’après le cours de Questions spéciales de mathématique
  ident: e_1_2_1_7_1
– ident: e_1_2_1_41_1
  doi: 10.1093/oso/9780198871378.001.0001
– ident: e_1_2_1_29_1
  doi: 10.4230/LIPIcs.FSCD.2020.16
– ident: e_1_2_1_37_1
  doi: 10.1017/S0960129515000377
– ident: e_1_2_1_1_1
  doi: 10.1016/0168-0072(91)90065-T
– ident: e_1_2_1_39_1
  doi: 10.23638/LMCS-15(1:6)2019
– start-page: 136
  volume-title: Basic Concepts of Enriched Category Theory (Lecture Notes in Mathematics
  year: 2005
  ident: e_1_2_1_45_1
– ident: e_1_2_1_63_1
  doi: 10.1145/3209108.3209157
– volume-title: Categorical domain theory: Scott topology, powercategories, coherent categories.. Theory and Applications of Categories [electronic only], 9
  year: 2001
  ident: e_1_2_1_43_1
– ident: e_1_2_1_16_1
– volume-title: A syntactic characterization of the equality in some models for the λ -calculus
  year: 1976
  ident: e_1_2_1_35_1
– ident: e_1_2_1_54_1
  doi: 10.1109/LICS52264.2021.9470617
– volume-title: Lambda Calculus with Types
  ident: e_1_2_1_6_1
– ident: e_1_2_1_11_1
  doi: 10.1007/978-3-540-74915-8_24
– volume-title: Amadio and Pierre-Louis Curien
  year: 1998
  ident: e_1_2_1_2_1
– ident: e_1_2_1_34_1
  doi: 10.1016/S0304-3975(96)80713-4
– volume: 354
  volume-title: IFIP TCS (Lecture Notes in Computer Science
  year: 2014
  ident: e_1_2_1_12_1
– ident: e_1_2_1_49_1
  doi: 10.1093/logcom/14.3.373
– volume-title: Call-By-Push-Value from a Linear Logic Point of View
  ident: e_1_2_1_20_1
– ident: e_1_2_1_23_1
  doi: 10.1016/j.tcs.2008.06.001
– volume-title: Cartesian closed bicategories: type theory and coherence. Ph. D. Dissertation
  year: 2007
  ident: e_1_2_1_58_1
– ident: e_1_2_1_15_1
  doi: 10.1016/0890-5401(87)90042-3
– ident: e_1_2_1_8_1
  doi: 10.1016/S0304-3975(00)00057-8
– ident: e_1_2_1_25_1
  doi: 10.1112/jlms/jdm096
– ident: e_1_2_1_50_1
  doi: 10.1016/j.entcs.2014.10.014
– ident: e_1_2_1_55_1
  doi: 10.1109/LICS.2017.8005064
– ident: e_1_2_1_56_1
  doi: 10.1017/S0960129515000316
– ident: e_1_2_1_59_1
  doi: 10.1137/0205037
– volume: 1132
  volume-title: Barwise (Ed.) (Studies in Logic and the Foundations of Mathematics
  year: 1977
  ident: e_1_2_1_4_1
– ident: e_1_2_1_30_1
  doi: 10.1090/memo/1184
– volume: 62
  start-page: 62
  year: 1997
  ident: e_1_2_1_40_1
  article-title: A Tutorial on (Co)Algebras and (Co)Induction
  publication-title: EATCS Bulletin
– ident: e_1_2_1_52_1
  doi: 10.1145/3158094
– ident: e_1_2_1_27_1
  doi: 10.1109/LICS.2019.8785708
SSID ssj0001934839
Score 2.2843995
Snippet Relational models of λ-calculus can be presented as type systems, the relational interpretation of a λ-term being given by the set of its typings. Within a...
SourceID crossref
acm
SourceType Index Database
Publisher
StartPage 218
SubjectTerms Categorical semantics
Lambda calculus
Theory of computation
SubjectTermsDisplay Theory of computation -- Categorical semantics
Theory of computation -- Lambda calculus
Title Why Are Proofs Relevant in Proof-Relevant Models?
URI https://dl.acm.org/doi/10.1145/3571201
Volume 7
WOSCitedRecordID wos000910847500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYo9NALr7YqpSAfuCGLrO2N7ROKEJQDjxxo4YZsr1ddiWyjJKD0wm9n_NhkAz3AgYu1sr2W1t9oPDuemQ-hPUozSzV1BMRHE64yTYwtu0RyODyLvGt4YFH4fSYuLuTNjeon_s5xoBMQdS2nUzV8V6ihD8D2qbNvgHu2KHTAM4AOLcAO7auAv_7zb783cj4FAA44H-3mwFoOTAChi8x6PA_a3fhZaF9_dqKFII_e0bm_T0hhXAPvWGhcnPNroJBCGKjSe1M3DzQEs_Nv7SaBqGn_Z3V_F2O-ok-3GgyrlOZ-4gtagES2PRCUBQ-EaslMimoPWotykZOMx7TnRsWKliT1L_tnCxpTtg5fGstuvtTr3JfAYLnIaPJ9LBbJTiMf0AoVufKhfeePLV-bYhwMwZgz7dc6SPO9SWIHLZOkZVtcraPV9FOAexHMDbTk6k201hBu4KR_P6MMsIVZDkdscYMkrmq8iC2O2B5-Qb9Ojq-OTknivCAaDMkJYbYwjgpVSqd5qbXQRhQdZmhXSm2oEUoWHZ07ZU2mJae8zMBGL2DXWVmqgrKvaLkGbL8h7C_VS2a5yYoSNLUETd1xNmdOU92xNN9Cm_Dxt8NY1eQ2bckWws1mzIZi8nreTPn-3xe30ae5cPxAy5PRvdtBH-3DpBqPdgMgT-g3Q_k
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+Are+Proofs+Relevant+in+Proof-Relevant+Models%3F&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Kerinec%2C+Axel&rft.au=Manzonetto%2C+Giulio&rft.au=Olimpieri%2C+Federico&rft.date=2023-01-09&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=7&rft.issue=POPL&rft.spage=218&rft.epage=248&rft_id=info:doi/10.1145%2F3571201&rft.externalDocID=3571201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon