Text As Data Computational Methods of Understanding Written Expression Using SAS

Text As Data: Combining qualitative and quantitative algorithms within the SAS system for accurate, effective and understandable text analytics The need for powerful, accurate and increasingly automatic text analysis software in modern information technology has dramatically increased. Fields as div...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: DeVille, Barry, Singh Bawa, Gurpreet
Médium: E-kniha
Jazyk:angličtina
Vydáno: Newark John Wiley & Sons, Incorporated 2021
Wiley-Blackwell
John Wiley & Sons (US)
Vydání:1
Edice:Wiley & SAS Business Series
Témata:
ISBN:1119487129, 9781119487128
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Text As Data: Combining qualitative and quantitative algorithms within the SAS system for accurate, effective and understandable text analytics The need for powerful, accurate and increasingly automatic text analysis software in modern information technology has dramatically increased. Fields as diverse as financial management, fraud and cybercrime prevention, Pharmaceutical R&D, social media marketing, customer care, and health services are implementing more comprehensive text-inclusive, analytics strategies. Text as Data: Computational Methods of Understanding Written Expression Using SAS presents an overview of text analytics and the critical role SAS software plays in combining linguistic and quantitative algorithms in the evolution of this dynamic field. Drawing on over two decades of experience in text analytics, authors Barry deVille and Gurpreet Singh Bawa examine the evolution of text mining and cloud-based solutions, and the development of SAS Visual Text Analytics. By integrating quantitative data and textual analysis with advanced computer learning principles, the authors demonstrate the combined advantages of SAS compared to standard approaches, and show how approaching text as qualitative data within a quantitative analytics framework produces more detailed, accurate, and explanatory results. Understand the role of linguistics, machine learning, and multiple data sources in the text analytics workflow Understand how a range of quantitative algorithms and data representations reflect contextual effects to shape meaning and understanding Access online data and code repositories, videos, tutorials, and case studies Learn how SAS extends quantitative algorithms to produce expanded text analytics capabilities Redefine text in terms of data for more accurate analysis This book offers a thorough introduction to the framework and dynamics of text analytics-and the underlying principles at work-and provides an in-depth examination of the interplay between qualitative-linguistic and quantitative, data-driven aspects of data analysis. The treatment begins with a discussion on expression parsing and detection and provides insight into the core principles and practices of text parsing, theme, and topic detection. It includes advanced topics such as contextual effects in numeric and textual data manipulation, fine-tuning text meaning and disambiguation. As the first resource to leverage the power of SAS for text analytics, Text as Data is an essential resource for SAS users and data scientists in any industry or academic application. 
AbstractList Text As Data: Combining qualitative and quantitative algorithms within the SAS system for accurate, effective and understandable text analytics The need for powerful, accurate and increasingly automatic text analysis software in modern information technology has dramatically increased. Fields as diverse as financial management, fraud and cybercrime prevention, Pharmaceutical R&D, social media marketing, customer care, and health services are implementing more comprehensive text-inclusive, analytics strategies. Text as Data: Computational Methods of Understanding Written Expression Using SAS presents an overview of text analytics and the critical role SAS software plays in combining linguistic and quantitative algorithms in the evolution of this dynamic field. Drawing on over two decades of experience in text analytics, authors Barry deVille and Gurpreet Singh Bawa examine the evolution of text mining and cloud-based solutions, and the development of SAS Visual Text Analytics. By integrating quantitative data and textual analysis with advanced computer learning principles, the authors demonstrate the combined advantages of SAS compared to standard approaches, and show how approaching text as qualitative data within a quantitative analytics framework produces more detailed, accurate, and explanatory results. Understand the role of linguistics, machine learning, and multiple data sources in the text analytics workflow Understand how a range of quantitative algorithms and data representations reflect contextual effects to shape meaning and understanding Access online data and code repositories, videos, tutorials, and case studies Learn how SAS extends quantitative algorithms to produce expanded text analytics capabilities Redefine text in terms of data for more accurate analysis This book offers a thorough introduction to the framework and dynamics of text analytics-and the underlying principles at work-and provides an in-depth examination of the interplay between qualitative-linguistic and quantitative, data-driven aspects of data analysis. The treatment begins with a discussion on expression parsing and detection and provides insight into the core principles and practices of text parsing, theme, and topic detection. It includes advanced topics such as contextual effects in numeric and textual data manipulation, fine-tuning text meaning and disambiguation. As the first resource to leverage the power of SAS for text analytics, Text as Data is an essential resource for SAS users and data scientists in any industry or academic application. 
This book offers a thorough introduction to the framework and dynamics of text analyticsand the underlying principles at workand provides an in-depth examination of the interplay between qualitative-linguistic and quantitative, data-driven aspects of data analysis. --
Author Singh Bawa, Gurpreet
DeVille, Barry
Author_xml – sequence: 1
  fullname: DeVille, Barry
– sequence: 2
  fullname: Singh Bawa, Gurpreet
BookMark eNpVj0tPAyEURjE-om1n6b4742IUuDDAso71kTRx07glTIGoQwYtqP35klajrm5OcnLy3RE6GOLgEDol-IJgTC-VkIQQxaQgjO6h6g9ztY9GP0DVUQEqGskZMDhGVUovuBQ4kY0iJ2iydJs8naXptclmgg69CclV33eMHm_my_auXjzc3rezRW2oIEBrDgw7YTEYDJ6D8d5aBwAUjPWmYW5FaNcIZyVjypYVYDm1nWJeUgWewhid7cKpfw4hRZ91F2OfKNsI3fWpLCRcSiKKeb4zTerdZ3qKISf9EdxW1__e_q2-ruPbu0tZb7WVG_LaBD2_ahsBpSrhCxsUWCw
ContentType eBook
DEWEY 006.312
DOI 10.1002/9781119487142
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781119487159
1119487153
Edition 1
1st
ExternalDocumentID bks000158817
9781119487159
EBC6738818
Genre Electronic books
GroupedDBID 38.
3XM
AABBV
AALIM
ABARN
ABQPQ
ADOEO
ADVEM
AERYV
AETLP
AFOJC
AHWGJ
AJAFW
AJFER
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
ERSLE
GEOUK
IPJKO
JFSCD
LQKAK
LWYJN
LYPXV
OHILO
OODEK
W1A
WIIVT
WZT
YPLAZ
ZEEST
AHCZW
ID FETCH-LOGICAL-a27132-5340e7d03a03f53affdde33323adfa64ec12b67ed8449d7123d52db94f8293f23
ISBN 1119487129
9781119487128
IngestDate Tue Oct 28 12:08:23 EDT 2025
Wed Mar 05 08:20:14 EST 2025
Wed Nov 26 04:42:43 EST 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA76.9.D343 .D48 2021
LCCallNum_Ident QA76.9.D343 D4 2022
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a27132-5340e7d03a03f53affdde33323adfa64ec12b67ed8449d7123d52db94f8293f23
OCLC 1276854343
PQID EBC6738818
PageCount 235
ParticipantIDs skillsoft_books24x7_bks000158817
askewsholts_vlebooks_9781119487159
proquest_ebookcentral_EBC6738818
PublicationCentury 2000
PublicationDate 2021
2021-09-29
2021.
PublicationDateYYYYMMDD 2021-01-01
2021-09-29
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Newark
PublicationPlace_xml – name: Newark
– name: Place of publication not identified
PublicationSeriesTitle Wiley & SAS Business Series
PublicationYear 2021
Publisher John Wiley & Sons, Incorporated
Wiley-Blackwell
John Wiley & Sons (US)
Publisher_xml – name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
– name: John Wiley & Sons (US)
SSID ssj0002518691
ssib046869985
ssib056423470
Score 2.3801856
Snippet Text As Data: Combining qualitative and quantitative algorithms within the SAS system for accurate, effective and understandable text analytics The need for...
This book offers a thorough introduction to the framework and dynamics of text analyticsand the underlying principles at workand provides an in-depth...
SourceID skillsoft
askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Computational intelligence
Text data mining
SubjectTermsDisplay Computational intelligence.
Electronic books.
Text data mining.
Subtitle Computational Methods of Understanding Written Expression Using SAS
TableOfContents Latent Structure: Tracking Topic Term Variability Across Semantic Fields -- Conclusion -- Notes -- Chapter 6 Classification and Prediction -- Use Case Scenario -- Composite Document Construction -- Model Development -- Ensemble or Multiagent Models -- Identifying Drivers of Textual Consumer Feedback Using Distance-Based Clustering and Matrix Factorization -- Use Case Scenario: Retailer Reliability Ecommerce -- Discussion -- Notes -- Chapter 7 Boolean Methods of Classification and Prediction -- Rule-Based Text Classification and Prediction -- Method Description -- Characteristics of Boolean Rule Methods -- Example of Boolean Rules Applied to Text Mining Vaccine Data -- An Example Analysis -- Summary -- Notes -- Chapter 8 Speech to Text -- Introduction -- Processing Audio Feedback -- Business Problem -- Process Components -- Further Analysis: Sentiment and Latent Topics -- Conclusion -- Notes -- Appendix A Mood State Identification in Text -- Origins of Mood State Identification -- An Approach to Mood State Developed at SAS -- Background and Discussion -- An Example Mood State Process Flow -- Notes -- Appendix B A Design Approach to Characterizing Users Based on AudioInteractions on a Conversational AI Platform -- Audio-Based User Interaction Inference -- Recommendation Perspective vs. Conventional -- Sole Dependency on Text-Based Bots -- Implementation Scenario: Voice-Based Conversational AI Platform -- Component Process Flow -- Constructed Interaction -- Note -- Appendix C SAS Patents in Text Analytics -- Glossary -- Index -- EULA
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- About the Authors -- Introduction -- Chapter 1 Text Mining and Text Analytics -- Background and Terminology -- Text Analytics: What Is It? -- Brief History of Text -- Writing Systems of the World -- Meaning and Ambiguity -- Notes -- Chapter 2 Text Analytics Process Overview -- Text Analytics Processing -- Process Building Blocks -- Preparation -- Utilization -- Process Description -- Text Mining Data Sources -- Capture -- Linguistic Processing -- Parsing and Parse Products -- Internal Representation and Text Products -- Representation -- Notes -- Chapter 3 Text Data Source Capture -- Text Mining Data Source Assembly -- Use Case: Accessing Text from SAS Conference Proceedings -- Text Data Capture Process -- Consuming Linguistics Text Products -- Notes -- Chapter 4 Document Content and Characterization -- Authorship Analytics: Early Text Indicators and Measures -- Function Words as Indicators -- Beyond Function Words -- Words and Word Forms as Psychological Artifacts -- A Case Study in Gender Detection -- Data Product Example -- Analysis Results -- Summarization and Discourse Analysis -- Elementary Operations as Building Blocks to Results -- Fact Extraction -- Sentiment Extraction -- Conditional Inference -- Deployment -- Summarization -- Conclusion -- Notes -- Chapter 5 Textual Abstraction: Latent Structure, Dimension Reduction -- Text Mining Data Source Assembly -- Latent Structure and Dimensional Reduction -- Singular Value Decomposition as Dimension Reduction -- Latent Semantic Analysis -- Clustering Approach to Document Classification -- SVD Approach to Document Indexing -- Rough Meaning - Approximation for Singular Value Dimensions -- Semantic Indexing: Assigning Category Based on Singular Value Dimensional Scores -- Identifying Topics Using Latent Structure
Title Text As Data
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6738818
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781119487159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELf4mATlYWyAVthQhHibqiU5xx-vhcIkJEDiQ7xFdmML1CqgurD--ZwTN4Ru0rSHvViJY9nx_aLz3eU-CDkUwABPSUTAxqJHGWKhtWY9y4UxkAAfmrrYBD8_F3d38jJUx3NVOQFelmI2k0__FWrsQ7B96Ow_wN1Mih14jaBji7BjuyARN7cBceSzvmzMcR1uVsuneO6Na4_hvpq8ufz21a9Kajx99h6HZvr9Co-w-7YJIE0WTAB_8rHxBturuTFhri4iX5OooCR1OPZvzLNOxtoaV-e9WshHrUeuCsAWIuHLZJkz5Curp4OLm7PGtoUyk2AyqQozhRVlSK_VvEHId4qDf7xbsUM6yo2QwSPzn7p3cv-aGyHJHB5PLRHgepOsGh8X8oksmfIz-TivhhEF5rhFNjz9I-UiT_9tcnsyuD762Qu1JnoqRT0dFXKgseFFDCoGm4GyFhk_AKSgCqsYNcMk1YybQlAqC9wBFFlaaEmtQInJprBDVsrH0nwhEQUDmdXAdKxoNpQ6VbSIjeWK-_T3rEsOWlvMX8bVf3GXt-iQyS6J5jvPq-fBWTcf9I98pVYUtHBIQ5G8miKlM563Adr9-5A9sv72TX0lK9PJs_lGPgxfpg9ush-gfQUtFR9d
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Text+as+Data&rft.au=Deville%2C+Barry&rft.au=Bawa%2C+Gurpreet+Singh&rft.date=2021-01-01&rft.pub=John+Wiley+%26+Sons+%28US%29&rft.isbn=9781119487128&rft_id=info:doi/10.1002%2F9781119487142&rft.externalDocID=bks000158817
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811194%2F9781119487159.jpg