Recommending Pre-Trained Models for IoT Devices

The availability of pre-trained models (PTMs) has enabled faster deployment of machine learning across applications by reducing the need for extensive training. Techniques like quantization and distillation have further expanded PTM applicability to resource-constrained IoT hardware. Given the many...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Technologies Results (Online) s. 126 - 130
Hlavní autoři: Patil, Parth V., Jiang, Wenxin, Peng, Huiyun, Lugo, Daniel, Kalu, Kelechi G., LeBlanc, Josh, Smith, Lawrence, Heo, Hyeonwoo, Aou, Nathanael, Davis, James C.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 27.04.2025
Témata:
ISSN:2832-7632
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The availability of pre-trained models (PTMs) has enabled faster deployment of machine learning across applications by reducing the need for extensive training. Techniques like quantization and distillation have further expanded PTM applicability to resource-constrained IoT hardware. Given the many PTM options for any given task, engineers often find it too costly to evaluate each model's suitability. Approaches such as LogME, LEEP, and ModelSpider help streamline model selection by estimating task relevance without exhaustive tuning. However, these methods largely leave hardware constraints as future work-a significant limitation in IoT settings. In this paper, we identify the limitations of current model recommendation approaches regarding hardware constraints and introduce a novel, hardware-aware method for PTM selection. We also propose a research agenda to guide the development of effective, hardware-conscious model recommendation systems for IoT applications.
ISSN:2832-7632
DOI:10.1109/ICSE-NIER66352.2025.00031