SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency

Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic−inorganic photovoltaics are critical challenges. Titania based solid-state hybrid solar cells are moderately efficient at converting visible photons to electrons, but major electrical losses still r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nano letters Ročník 10; číslo 4; s. 1259 - 1265
Hlavní autoři: Snaith, Henry J, Ducati, Caterina
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington, DC American Chemical Society 14.04.2010
Témata:
ISSN:1530-6984, 1530-6992, 1530-6992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic−inorganic photovoltaics are critical challenges. Titania based solid-state hybrid solar cells are moderately efficient at converting visible photons to electrons, but major electrical losses still remain. A material based paradigm shift is required to dramatically enhance the performance of these devices. Here, we present an investigation into solid-state dye-sensitized solar cells (SDSCs) incorporating a molecular hole-transporter and mesoporous tin oxide electrodes, in place of titania usually employed. We investigate the influence of treating the surface of the SnO2 with different oxides and find that MgO “passivated” SnO2 electrodes demonstrate an unprecedented absorbed photon-to-electron conversion efficiency of near unity across a broad spectral range. A dual surface treatment of TiO2 followed by MgO enables tuning of the solar cell photovoltage, fill factor, and efficiency with visible light absorbing cells delivering 3% solar-to-electrical full sun power conversion efficiency.
AbstractList Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic-inorganic photovoltaics are critical challenges. Titania based solid-state hybrid solar cells are moderately efficient at converting visible photons to electrons, but major electrical losses still remain. A material based paradigm shift is required to dramatically enhance the performance of these devices. Here, we present an investigation into solid-state dye-sensitized solar cells (SDSCs) incorporating a molecular hole-transporter and mesoporous tin oxide electrodes, in place of titania usually employed. We investigate the influence of treating the surface of the SnO(2) with different oxides and find that MgO "passivated" SnO(2) electrodes demonstrate an unprecedented absorbed photon-to-electron conversion efficiency of near unity across a broad spectral range. A dual surface treatment of TiO(2) followed by MgO enables tuning of the solar cell photovoltage, fill factor, and efficiency with visible light absorbing cells delivering 3% solar-to-electrical full sun power conversion efficiency.
Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic-inorganic photovoltaics are critical challenges. Titania based solid-state hybrid solar cells are moderately efficient at converting visible photons to electrons, but major electrical losses still remain. A material based paradigm shift is required to dramatically enhance the performance of these devices. Here, we present an investigation into solid-state dye-sensitized solar cells (SDSCs) incorporating a molecular hole-transporter and mesoporous tin oxide electrodes, in place of titania usually employed. We investigate the influence of treating the surface of the SnO(2) with different oxides and find that MgO "passivated" SnO(2) electrodes demonstrate an unprecedented absorbed photon-to-electron conversion efficiency of near unity across a broad spectral range. A dual surface treatment of TiO(2) followed by MgO enables tuning of the solar cell photovoltage, fill factor, and efficiency with visible light absorbing cells delivering 3% solar-to-electrical full sun power conversion efficiency.Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic-inorganic photovoltaics are critical challenges. Titania based solid-state hybrid solar cells are moderately efficient at converting visible photons to electrons, but major electrical losses still remain. A material based paradigm shift is required to dramatically enhance the performance of these devices. Here, we present an investigation into solid-state dye-sensitized solar cells (SDSCs) incorporating a molecular hole-transporter and mesoporous tin oxide electrodes, in place of titania usually employed. We investigate the influence of treating the surface of the SnO(2) with different oxides and find that MgO "passivated" SnO(2) electrodes demonstrate an unprecedented absorbed photon-to-electron conversion efficiency of near unity across a broad spectral range. A dual surface treatment of TiO(2) followed by MgO enables tuning of the solar cell photovoltage, fill factor, and efficiency with visible light absorbing cells delivering 3% solar-to-electrical full sun power conversion efficiency.
Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic−inorganic photovoltaics are critical challenges. Titania based solid-state hybrid solar cells are moderately efficient at converting visible photons to electrons, but major electrical losses still remain. A material based paradigm shift is required to dramatically enhance the performance of these devices. Here, we present an investigation into solid-state dye-sensitized solar cells (SDSCs) incorporating a molecular hole-transporter and mesoporous tin oxide electrodes, in place of titania usually employed. We investigate the influence of treating the surface of the SnO2 with different oxides and find that MgO “passivated” SnO2 electrodes demonstrate an unprecedented absorbed photon-to-electron conversion efficiency of near unity across a broad spectral range. A dual surface treatment of TiO2 followed by MgO enables tuning of the solar cell photovoltage, fill factor, and efficiency with visible light absorbing cells delivering 3% solar-to-electrical full sun power conversion efficiency.
Author Snaith, Henry J
Ducati, Caterina
Author_xml – sequence: 1
  givenname: Henry J
  surname: Snaith
  fullname: Snaith, Henry J
  email: h.snaith1@physics.ox.ac.uk
– sequence: 2
  givenname: Caterina
  surname: Ducati
  fullname: Ducati, Caterina
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22636161$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20302336$$D View this record in MEDLINE/PubMed
BookMark eNpFkd9LwzAQx4NMdP548B-QvohP1WvSZMnjrNMJQ4W555KmqUa6RJNWrH-9EaeDg_v1uYPv3QEaWWc1QicZXGSAs0vbCiAchN9B44wSSJkQePQf83wfHYTwCgCCUNhD-xgIYELYGHVL-4DTKxl0nVwPOl1qG0xnvmI6Hypv6mTpWumTQrdtSGafL6aKbfuc3OtYXVnTDcm0Cs5XceLxxXXOpp1LZ61WnXc2KZz90D6YGM6axiijrRqO0G4j26CPN_4QrW5mT8U8XTzc3hXTRSrxBLqU0oZiqijwWoLkLGdAcsVzwhrBBa-ZxHlNowHDk6rKJYGmViKHioOmOieH6Px375t3770OXbk2QUUl0mrXh3JCCOeEiB_ydEP21VrX5Zs3a-mH8u9QETjbADIo2TZeWmXClsOMsIxlW06qUL663tsosMyg_HlU-f8o8g036IOD
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/nl903809r
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1530-6992
EndPage 1265
ExternalDocumentID 20302336
22636161
c362397030
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
53G
6P2
AAHBH
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AFFNX
AHGAQ
CUPRZ
GGK
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a270t-55f525c508da0a8646034c8436f9898d6a24d54d50627bb4a30fdc940b80e5e43
IEDL.DBID ACS
ISICitedReferencesCount 501
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000276557100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Thu Sep 04 18:14:55 EDT 2025
Mon Jul 21 05:49:06 EDT 2025
Mon Jul 21 09:11:41 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Solar cell
tin oxide
dye sensitized
solid-state
organic
Organic-inorganic hybrid materials
Organic dye
Hybrid material
Tin oxide
Magnesium oxide
Titanium oxide
Porous material
Mesoporosity
Surface treatment
Photovoltaic cell
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a270t-55f525c508da0a8646034c8436f9898d6a24d54d50627bb4a30fdc940b80e5e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20302336
PQID 733883394
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_733883394
pubmed_primary_20302336
pascalfrancis_primary_22636161
acs_journals_10_1021_nl903809r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2010-04-14
PublicationDateYYYYMMDD 2010-04-14
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-14
  day: 14
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0009350
Score 2.5431592
Snippet Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic−inorganic photovoltaics are critical challenges. Titania...
Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic-inorganic photovoltaics are critical challenges. Titania...
SourceID proquest
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1259
SubjectTerms Applied sciences
Coloring Agents - chemistry
Electrodes
Electronics
Electrons
Energy
Exact sciences and technology
Molecular electronics, nanoelectronics
Nanotechnology - methods
Natural energy
Photons
Photovoltaic conversion
Porosity
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells. Photoelectrochemical cells
Solar Energy
Surface Properties
Tin Compounds - chemistry
Title SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency
URI http://dx.doi.org/10.1021/nl903809r
https://www.ncbi.nlm.nih.gov/pubmed/20302336
https://www.proquest.com/docview/733883394
Volume 10
WOSCitedRecordID wos000276557100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Publications
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ606kEPvh_10Wyi143ALrAca23TU21STXojsCyxSQOmoEn99c5Aa-vBaMKFhAmwM7Pzze7sfAB3ttIJzoySIxSPufQNuhT6Nw98DBepSL1Y64pswh8O1WQSjBpw-8sOvmPfZ7PAEsoK5k3YdhDeUt1epzted9YVFQ0rei7mQYGSq_ZBm6IUenRBdY9Rgb-e1pwVv4PKKrj0D_71WYewv8SOrFMr-wgaJjuGvY2OgidQjrMnhz9gaErY48LwMdWnl9NPvB0s6HAWG1Muy7pmNitYj9ixp1T4zIZo8YwA6IJ14iKfxygxes2JYLjMeW9JlsO6VKRerbCxXtV8gk5unsJLv_fcHfAlsQKPHN8queumruNqxGZJZEXKkx5qSyspvJToJBMvcmTi4kU9jONYRsJKEx1IK1aWcY0UZ7CV5Zm5AIYGoHGasO1UKcy1VBAZFIxtW_uCmqe1oI0jHy4dowirPW_HDr-HDx_4oZTwre6yESIuFB7i0RawlZZCNH3az4gyk78XoY_ptRIikC04r7W3FraIDEl4l3-9_gp263oAtFZ5DVvl_N3cwI7-KKfFvA1Nf6Lalb19AT08zIM
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5swED5t2aStD_vZtVm3zA97tQbYgHlMWapMy7JIyaS8ITBGjRRBhWml7K_fHZAme5imSrwgcWD57nx3-Px9AJ9dpXNcGSXHVDzjMjToUujfPAoxXBSiCDKtW7KJcD5X63W06GFy6CwMDsLim2y7iX9AF3C_lNvIEcqJ6sfwxMewSmwF43h5ANgVLRsrOjCWQ5GSexShY1GKQNpS-2NqcQaKjrri37llG2OuXj5kdK_gRZ9JsnGn-tfwyJRv4OQIX_AtNMvyp8cvMVDl7OvO8CV1qzeb33g73dFRLbakypbFZru1bEJc2Rtqg2ZztH9G6eiOjTNb1RlKLK4rohtuKj7pqXNYTC3r7f82NmmhKOgc5yn8upqs4invaRZ46oVOw32_8D1fY6aWp06qAhmg7rSSIiiIXDIPUk_mPl6EaJxlMhVOketIOplyjG-keAeDsirNOTA0B42LhusWSmHlpaLUoGDmujoUBKU2hBHOXtK7iU3aHXDPTe6nDx_4SzfJTYe5kWCWKALMTofA9spK0BFodyMtTXVrkxCLbSVEJIdw1inxIOwQNZII3v_v85_g2XT1Y5bMvs2_X8DzrlMA7Vh-gEFT35qP8FTfNRtbj1rj-wPXrtQB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5swED5tXTVtD9u6H13aLfPDXq0BNmAeU5Io06YsEq2UNwTGaJEiiGJSKf3rewdk6R6mqRIvSBxYvjvfHT5_H8BXV-kCV0bJMRXPuQwNuhT6N49CDBelKINc65ZsIpzP1XIZLfpCkc7C4CAsvsm2m_jk1Zui7BEG3G_VOnKEcqLtU3jmYyAnxoJRnBxBdkXLyIpOjCVRpOQBSeihKEUhbakFMrM4C2VHX_Hv_LKNM9PXjx3hG3jVZ5Rs1JnAGTwx1Vt4-QBn8B00SfXL41cYsAo23hueUNd6s7rD29mejmyxhCpcFpv12rIJcWavqB2azdEPGKWlezbKbb3NUWLxuyba4abmk55Ch8XUut7-d2OTFpKCznO-h5vp5Dqe8Z5ugWde6DTc90vf8zVmbEXmZCqQAepQKymCkkgmiyDzZOHjRcjGeS4z4ZSFjqSTK8f4RooPcFLVlfkIDM1C4-LhuqVSWIGpKDMomLuuDgVBqg1giDOY9u5i03Yn3HPTP9OHD_yln3TTYW-kmC2KALPUAbCDwlJ0CNrlyCpT72waYtGthIjkAM47RR6FHaJIEsHF_z7_BZ4vxtP05_f5j0t40TUMoDnLT3DSbHfmM5zq22Zlt8PW_u4B1ATWew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SnO2-based+dye-sensitized+hybrid+solar+cells+exhibiting+near+unity+absorbed+photon-to-electron+conversion+efficiency&rft.jtitle=Nano+letters&rft.au=Snaith%2C+Henry+J&rft.au=Ducati%2C+Caterina&rft.date=2010-04-14&rft.eissn=1530-6992&rft.volume=10&rft.issue=4&rft.spage=1259&rft_id=info:doi/10.1021%2Fnl903809r&rft_id=info%3Apmid%2F20302336&rft.externalDocID=20302336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon