Mining Highly Authoritative Web Resources for One-Stop Learning

The convenience of the Web equipped with automatic search engines attracts "focused learners" for learning about a new subject of interest. The resources recommended by a search engine are, however, often a collection of links to other resources, or commercial-driven, irrelevant, misleadin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/WIC/ACM International Conference on web intelligence s. 289 - 292
Hlavní autoři: Lim, SeungJin, Ko, Youngrae
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Washington, DC, USA IEEE Computer Society 19.09.2005
IEEE
Edice:ACM Conferences
Témata:
ISBN:076952415X, 9780769524153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The convenience of the Web equipped with automatic search engines attracts "focused learners" for learning about a new subject of interest. The resources recommended by a search engine are, however, often a collection of links to other resources, or commercial-driven, irrelevant, misleading pages. Subsequently, the learner needs to manually click through numerous pages to find quality resources. This paper proposes an approach to a new problem of mining the most suitable resources for one-stop learning, called "highly authoritative resources." The experimental results using top search results from Google and Yahoo for various subjects show that the proposed algorithm is highly effective both in quality and time.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:076952415X
9780769524153
DOI:10.1109/WI.2005.97