Redox-Programmable Spin-Crossover Behaviors in a Cationic Framework

Metal-organic frameworks (MOFs) provide versatile platforms to construct multi-responsive materials. Herein, by introducing the neutral tetradentate ligand and the linear dicyanoaurate(I) anion, we reported a rare cationic MOF [FeII(TPB){AuI(CN)2}]I·4H2O·4DMF (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Chemical Society Ročník 144; číslo 32; s. 14888
Hlavní autoři: Wu, Si-Guo, Wang, Long-Fei, Ruan, Ze-Yu, Du, Shan-Nan, Gómez-Coca, Silvia, Ni, Zhao-Ping, Ruiz, Eliseo, Chen, Xiao-Ming, Tong, Ming-Liang
Médium: Journal Article
Jazyk:angličtina
Vydáno: 17.08.2022
ISSN:1520-5126, 1520-5126
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Metal-organic frameworks (MOFs) provide versatile platforms to construct multi-responsive materials. Herein, by introducing the neutral tetradentate ligand and the linear dicyanoaurate(I) anion, we reported a rare cationic MOF [FeII(TPB){AuI(CN)2}]I·4H2O·4DMF (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzene) with hysteretic spin-crossover (SCO) behavior near room temperature. This hybrid framework with an open metal site (AuI) exhibits redox-programmable capability toward dihalogen molecules. By means of post-synthetic modification, all the linear [AuI(CN)2]- linkers can be oxidized to square planar [AuIII(CN)2X2]- units, which results in the hysteretic SCO behaviors switching from one-step to two-step for Br2 and three-step for I2. More importantly, the stepwise SCO behaviors can go back to one-step via the reduction by l-ascorbic acid (AA). Periodic DFT calculations using various SCAN-type exchange-correlation functionals have been employed to rationalize the experimental data. Hence, these results demonstrate for the first time that switchable one-/two-/three-stepped SCO dynamics can be manipulated by chemical redox reactions, which opens a new perspective for multi-responsive molecular switches.Metal-organic frameworks (MOFs) provide versatile platforms to construct multi-responsive materials. Herein, by introducing the neutral tetradentate ligand and the linear dicyanoaurate(I) anion, we reported a rare cationic MOF [FeII(TPB){AuI(CN)2}]I·4H2O·4DMF (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzene) with hysteretic spin-crossover (SCO) behavior near room temperature. This hybrid framework with an open metal site (AuI) exhibits redox-programmable capability toward dihalogen molecules. By means of post-synthetic modification, all the linear [AuI(CN)2]- linkers can be oxidized to square planar [AuIII(CN)2X2]- units, which results in the hysteretic SCO behaviors switching from one-step to two-step for Br2 and three-step for I2. More importantly, the stepwise SCO behaviors can go back to one-step via the reduction by l-ascorbic acid (AA). Periodic DFT calculations using various SCAN-type exchange-correlation functionals have been employed to rationalize the experimental data. Hence, these results demonstrate for the first time that switchable one-/two-/three-stepped SCO dynamics can be manipulated by chemical redox reactions, which opens a new perspective for multi-responsive molecular switches.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-5126
1520-5126
DOI:10.1021/jacs.2c06313