Conformal Graph Directed Markov Systems on Carnot Groups
We develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, we develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2020
|
| Ausgabe: | 1 |
| Schriftenreihe: | Memoirs of the American Mathematical Society |
| Schlagworte: | |
| ISBN: | 9781470442156, 1470442159 |
| ISSN: | 0065-9266, 1947-6221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped
with a sub-Riemannian metric. In particular, we develop the thermodynamic formalism and show that, under natural hypotheses, the limit
set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen’s parameter. We illustrate our results for a variety of examples
of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include
the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the
non-real classical rank one hyperbolic spaces. |
|---|---|
| AbstractList | We develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped
with a sub-Riemannian metric. In particular, we develop the thermodynamic formalism and show that, under natural hypotheses, the limit
set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen’s parameter. We illustrate our results for a variety of examples
of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include
the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the
non-real classical rank one hyperbolic spaces. The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces. |
| Author | Tyson, Jeremy Chousionis, Vasilis Urbański, Mariusz |
| Author_xml | – sequence: 1 givenname: Vasilis surname: Chousionis fullname: Chousionis, Vasilis email: vasileios.chousionis@uconn.edu organization: Department of Mathematics, University of Connecticut, 196 Auditorium Road U-3009, Storrs, CT 06269-3009 – sequence: 2 givenname: Jeremy surname: Tyson fullname: Tyson, Jeremy email: tyson@illinois.edu organization: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801 – sequence: 3 givenname: Mariusz surname: Urbański fullname: Urbański, Mariusz email: urbanski@unt.edu organization: Department of Mathematics, University of North Texas, General Academics Building 435, 1155 Union Circle 311430, Denton, TX 76203-5017 |
| BackLink | https://cir.nii.ac.jp/crid/1130286429696254208$$DView record in CiNii |
| BookMark | eNo1kU9PGzEQxV0gqAnNgW-wEpUqDgszY6_XPtJtCkggDlS9Wo7jFSG767DegPrtcf70MnOY37wnvTdhJ13oPGPnCFcIGq5b34ZrJI1f2ARFCUKSKPCIjVGLMpdEeMymulS7myAs5AkbA8gi1yTliE0ICIAToDhNCulLS9JSfGXTGF8BgASi0jhmqgpdHfrWNtltb9cv2a9l793gF9mj7VfhPXv-Fwffxix0WWX7LgyJC5t1_MZGtW2inx72Gfv7e_anussfnm7vq5uH3JIUWObFHC0qR6WyWDrH64WrFS8Kx0s1156k406jLtEKn8ianJfWSrRzVzuEmp-xy72wjSv_EV9CM0Tz3vh5CKto_oewCyixP_bsug9vGx8Hs8Oc74beNmb2s5JcSElFIr_vyW65NG65nYgcSEmRgkppFYJAJeziYN5Gc7BEMNuSzLYksy2JfwJgH3eS |
| ContentType | eBook Book |
| Copyright | Copyright 2020 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2020 American Mathematical Society |
| DBID | RYH |
| DEWEY | 621.40210000000002 |
| DOI | 10.1090/memo/1291 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISBN | 1470462451 9781470462451 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470462451 EBC6346625 BC03017449 10_1090_memo_1291 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AEKGI AERYV AFOJC AHWGJ AJFER BBABE BKSDG CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a26417-5b1a18c278a17cc3fdcf8355c378b9e26c3c91971a4e1a1f2ce6aa61abcfc10f3 |
| ISBN | 9781470442156 1470442159 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000058257&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 03:44:46 EST 2024 Wed Dec 10 11:30:59 EST 2025 Thu Jun 26 21:05:54 EDT 2025 Thu Aug 14 15:25:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heisenberg group iterated function system Bowen’s formula Hausdorff dimension Hausdorff measure continued fractions Iwasawa Carnot group conformal mapping packing measure open set condition thermodynamic formalism |
| LCCN | 2020032014 |
| LCCallNum_Ident | TJ265$b.C468 2020 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a26417-5b1a18c278a17cc3fdcf8355c378b9e26c3c91971a4e1a1f2ce6aa61abcfc10f3 |
| Notes | Includes bibliographical references (p. 149-151) and index July 2020, volume 266, number 1291 (first of 6 numbers). |
| OCLC | 1194962964 |
| PQID | EBC6346625 |
| PageCount | 170 |
| ParticipantIDs | askewsholts_vlebooks_9781470462451 proquest_ebookcentral_EBC6346625 nii_cinii_1130286429696254208 ams_ebooks_10_1090_memo_1291 |
| PublicationCentury | 2000 |
| PublicationDate | [2020] |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: [2020] |
| PublicationDecade | 2020 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, R.I – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2020 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0002411891 ssj0008047 |
| Score | 2.6031096 |
| Snippet | We develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped
with a sub-Riemannian... The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Conformal mapping Hausdorff measures Markov processes Nilpotent Lie groups Thermodynamics -- Mathematical models |
| TableOfContents | Introduction
--
Carnot groups
--
Carnot groups of Iwasawa type and conformal mappings
--
Metric and geometric properties of conformal maps
--
Conformal graph directed Markov systems
--
Examples of GDMS in Carnot groups
--
Countable alphabet symbolic dynamics: foundations of the thermodynamic formalism
--
Hausdorff dimension of limit sets
--
Conformal measures and regularity of domains
--
Examples revisited
--
Finer properties of limit sets: Hausdorff, packing and invariant measures
--
Equivalent separation conditions for finite GDMS Chapter 10. Finer properties of limit sets: Hausdorff, packing and invariant measures -- 10.1. Finiteness of Hausdorff measure and positivity of packing measure -- 10.2. Positivity of Hausdorff measure and finiteness of packing measure -- 10.3. Hausdorff and packing measures for continued fraction systems in groups of Iwasawa type -- 10.4. Hausdorff dimensions of invariant measures -- Chapter 11. Equivalent separation conditions for finite GDMS -- Bibliography -- Index -- Back Cover Cover -- Title page -- Introduction -- Chapter 1. Carnot groups -- 1.1. Carnot groups -- 1.2. Contact mappings -- 1.3. Dimension comparison in Carnot groups -- Chapter 2. Carnot groups of Iwasawa type and conformal mappings -- 2.1. Iwasawa groups of complex, quaternionic or octonionic type -- 2.2. Conformal mappings on Carnot groups -- Chapter 3. Metric and geometric properties of conformal maps -- 3.1. Norm of the horizontal differential and local Lipschitz constant -- 3.2. Koebe distortion theorems for Carnot conformal mappings -- Chapter 4. Conformal graph directed Markov systems -- 4.1. Graph Directed Markov Systems -- 4.2. Carnot conformal graph directed Markov systems -- Chapter 5. Examples of GDMS in Carnot groups -- 5.1. Infinite self-similar iterated function systems -- 5.2. Iwasawa conformal Cantor sets -- 5.3. Continued fractions in Iwasawa groups -- 5.4. Complex hyperbolic Kleinian groups of Schottky type -- Chapter 6. Countable alphabet symbolic dynamics: foundations of the thermodynamic formalism -- 6.1. Subshifts of finite type and topological pressure -- 6.2. Gibbs states, equilibrium states and potentials -- 6.3. Perron-Frobenius Operator -- Chapter 7. Hausdorff dimension of limit sets -- 7.1. Topological pressure, -number, and Bowen's parameter -- 7.2. Hausdorff dimension and Bowen's formula -- 7.3. Characterizations of co-finitely regular and strongly regular Carnot conformal IFS -- 7.4. Dimension spectrum for subsystems of Carnot conformal IFS -- Chapter 8. Conformal measures and regularity of domains -- 8.1. Bounding coding type and null boundary -- 8.2. Regularity properties of domains in Carnot groups -- 8.3. Conformal measure estimates -- Chapter 9. Examples revisited -- 9.1. Infinite self-similar iterated function systems -- 9.2. Continued fractions in groups of Iwasawa type -- 9.3. Iwasawa conformal Cantor sets |
| Title | Conformal Graph Directed Markov Systems on Carnot Groups |
| URI | https://www.ams.org/memo/1291/ https://cir.nii.ac.jp/crid/1130286429696254208 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6346625 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470462451 |
| Volume | 266 |
| WOSCitedRecordID | wos0000058257&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZo4UBPPEVhF0WIPVVl48Tx47pRAYG0cOiivUWO64iIboKStlr49cw4TloVJMSBHqw6sTLSfFE8M575hpDXBec5ttoA38SYOUtCNtcmj-YxpkRFqwTPZlyzCXF5Ka-v1WffH7N17QREVcnbW_X9v0IN1wBsLJ39B7iHh8IF-A-gwwiww3hkEQ9TTzRQd6VF65ljoZ51u5VduXqceudJm93xQKqbqt7MXEnHYFSnX-stxs58g3Tdlms3G5z7H74664NtsAhl-aa_c9Xk-ixNziTzXbBBYrltfx6GFKLwKKSwPysamGORmaQeqEkG_5MyETIGVgP_49c4VJi-eGNvaowPRF1briN664sUnTLBmBqRkeDgP999t_h09XEIlIGJQaWirijPS1M9V1cvvaeMUuE5SjtHWY46t52QiW6_wX4Be8kGZqOqLH_bdp0tsXxAxlhf8pDcsdUjMjngg4TZXhXtYyIHQAMHaNADGnSABh7QoK6CDtCgA_QJ-fJ2sUzfz32ji7kGexTMhCSnmkoTCampMCYuVqYA0zgxsZC5shE3sVFUCaqZhZVFZCzXmlOdm8LQsIifknFVV_YZCSz-4CvLbVKwPI51rIVagZ8ahlpKZafkBNSSuaP4NutSEMIMtZah1qbk1YG-st3aL-zVzSOWwKJTUGNmShwpHn1LcGORZylKMF1jSoJewZ0gn2icLS5SHjMOy57_5REvyP39m3lCxptma0_JPbPblG3z0r8jvwC8r1VL |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Conformal+graph+directed+Markov+systems+on+Carnot+groups&rft.au=Chousionis%2C+Vasilionis&rft.au=Tyson%2C+Jeremy+T.&rft.au=Urba%C5%84ski%2C+Mariusz&rft.date=2020-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470442156&rft_id=info:doi/10.1090%2Fmemo%2F1291&rft.externalDocID=BC03017449 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470462451.jpg |

