Prediction method and application of shale reservoirs core gas content based on machine learning
Saved in:
| Published in: | Journal of applied geophysics Vol. 204; p. 104741 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.09.2022
|
| ISSN: | 0926-9851 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| ArticleNumber | 104741 |
|---|---|
| Author | Luo, Shiyi Wei, Shuijian Xu, Tianji |
| Author_xml | – sequence: 1 givenname: Shiyi surname: Luo fullname: Luo, Shiyi – sequence: 2 givenname: Tianji surname: Xu fullname: Xu, Tianji – sequence: 3 givenname: Shuijian surname: Wei fullname: Wei, Shuijian |
| BookMark | eNqFkMtqwzAQRbVIoUnaTyjoB5zqZbuiqxL6gkC7aNfuWBonMo5kJFHo3zdOsuqmi2GGC-fCnAWZ-eCRkBvOVpzx6rZf9TCOWwwrwYQ4ZKpWfEbmTIuq0HclvySLlHrGGJdMzcnXe0TrTHbB0z3mXbAU_GHGcXAGjnHoaNrBgDRiwvgdXEzUhIh0C9PhM_pMW0ho6VQCZuc80gEheue3V-SigyHh9XkvyefT48f6pdi8Pb-uHzYFiErkwnZSlbpUUnaiE7WRVcsAdaVBKylsa7TSHdYGjBVKlXWprWpZBcrWHKRUcknKU6-JIaWIXTNGt4f403DWTGqavjmraSY1zUnNgbv_wxmXj4_nCG74h_4FxKpzQw |
| CitedBy_id | crossref_primary_10_1016_j_gsme_2025_09_003 crossref_primary_10_3389_feart_2023_1220189 crossref_primary_10_3390_en16176169 crossref_primary_10_1016_j_jappgeo_2024_105346 crossref_primary_10_1002_ese3_70170 crossref_primary_10_1016_j_coldregions_2023_103946 crossref_primary_10_3390_app15042156 crossref_primary_10_2118_211800_PA crossref_primary_10_1007_s40789_025_00807_z crossref_primary_10_1016_j_earscirev_2024_104969 |
| Cites_doi | 10.1016/j.apenergy.2015.03.040 10.1016/j.petrol.2020.107801 10.1016/j.jngse.2021.104064 10.1016/j.ipl.2010.05.024 10.1155/2021/7390055 10.1016/j.jngse.2015.07.008 10.3390/en14051461 10.1023/A:1018054314350 10.1016/j.rser.2018.05.026 10.1016/j.coal.2017.05.012 10.3390/min9050265 10.1016/j.apenergy.2017.04.034 10.26804/ager.2020.02.03 10.1016/S1876-3804(17)30060-5 10.1063/5.0014651 10.1016/j.petrol.2019.01.096 10.1016/j.petrol.2019.06.014 10.1016/j.apenergy.2019.114329 10.1016/j.petrol.2021.109516 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jappgeo.2022.104741 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_jappgeo_2022_104741 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLOT ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- ~HD |
| ID | FETCH-LOGICAL-a262t-df34595433f2f27c36b0ae969a9432dbc949fe7cacd2445759d4b06a4d71a3343 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855625200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-9851 |
| IngestDate | Sat Nov 29 07:06:37 EST 2025 Tue Nov 18 20:59:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a262t-df34595433f2f27c36b0ae969a9432dbc949fe7cacd2445759d4b06a4d71a3343 |
| ParticipantIDs | crossref_primary_10_1016_j_jappgeo_2022_104741 crossref_citationtrail_10_1016_j_jappgeo_2022_104741 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of applied geophysics |
| PublicationYear | 2022 |
| References | Yuan (10.1016/j.jappgeo.2022.104741_bb0140) 2015; 148 Passey (10.1016/j.jappgeo.2022.104741_bb0085) 1990; 74 Tang (10.1016/j.jappgeo.2022.104741_bb0110) 2019; 9 Middleton (10.1016/j.jappgeo.2022.104741_bb0075) 2017; 199 Xue (10.1016/j.jappgeo.2022.104741_bb0130) 2021; 196 Siddig (10.1016/j.jappgeo.2022.104741_bb0100) 2021; 2021 Feng (10.1016/j.jappgeo.2022.104741_bb0025) 2015 Mahmoud (10.1016/j.jappgeo.2022.104741_bb0070) 2017; 179 Han (10.1016/j.jappgeo.2022.104741_bb0045) 2020; 10 Lin (10.1016/j.jappgeo.2022.104741_bb0065) 2020; 260 Basyir (10.1016/j.jappgeo.2022.104741_bb0005) 2020; 2256 Liang (10.1016/j.jappgeo.2022.104741_bb0060) 2018; 42 Gao (10.1016/j.jappgeo.2022.104741_bb0030) 2003; 15 Zhu (10.1016/j.jappgeo.2022.104741_bb0155) 2020; 4 Li (10.1016/j.jappgeo.2022.104741_bb0050) 2020; 39 Rui (10.1016/j.jappgeo.2022.104741_bb0090) 2019; 180 Duan (10.1016/j.jappgeo.2022.104741_bb0020) 2016; 37 Tan (10.1016/j.jappgeo.2022.104741_bb0105) 2015; 26 Niu (10.1016/j.jappgeo.2022.104741_bb0080) 2021; 14 Wang (10.1016/j.jappgeo.2022.104741_bb0115) 2019; 176 Grecu (10.1016/j.jappgeo.2022.104741_bb0035) 2018; 93 Guo (10.1016/j.jappgeo.2022.104741_bb0040) 2017; 44 Wang (10.1016/j.jappgeo.2022.104741_bb0120) 2021; 9 Di Lena (10.1016/j.jappgeo.2022.104741_bb0015) 2010; 110 Zhu (10.1016/j.jappgeo.2022.104741_bb0160) 2022; 209 Breiman (10.1016/j.jappgeo.2022.104741_bb0010) 1996; 24 Zeng (10.1016/j.jappgeo.2022.104741_bb0145) 2021; 93 |
| References_xml | – volume: 148 start-page: 49 year: 2015 ident: 10.1016/j.jappgeo.2022.104741_bb0140 article-title: A review of the technical and economic evaluation techniques for shale gas development publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.03.040 – volume: 196 year: 2021 ident: 10.1016/j.jappgeo.2022.104741_bb0130 article-title: A data-driven shale gas production forecasting method based on the multi-objective random forest regression publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107801 – volume: 93 year: 2021 ident: 10.1016/j.jappgeo.2022.104741_bb0145 article-title: Selective methods of TOC content estimation for organic-rich interbedded mudstone source rocks publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.104064 – volume: 110 start-page: 679 year: 2010 ident: 10.1016/j.jappgeo.2022.104741_bb0015 article-title: Optimal global alignment of signals by maximization of Pearson correlation publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2010.05.024 – volume: 2021 year: 2021 ident: 10.1016/j.jappgeo.2022.104741_bb0100 article-title: Application of various machine learning techniques in predicting total organic carbon from well logs publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/7390055 – volume: 26 start-page: 792 year: 2015 ident: 10.1016/j.jappgeo.2022.104741_bb0105 article-title: Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale: Acomparative study publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.07.008 – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.jappgeo.2022.104741_bb0080 article-title: A production prediction method for shale gas wells based on multiple regression publication-title: Energies doi: 10.3390/en14051461 – volume: 74 start-page: 1777 year: 1990 ident: 10.1016/j.jappgeo.2022.104741_bb0085 article-title: A practical model for organic richness from porosity and resistivity logs1 publication-title: Am. Assoc. Pet. Geol. Bull. – year: 2015 ident: 10.1016/j.jappgeo.2022.104741_bb0025 – volume: 39 start-page: 8823 year: 2020 ident: 10.1016/j.jappgeo.2022.104741_bb0050 article-title: Economic benefit of shale gas exploitation based on back propagation neural network publication-title: J. Intell. Fuzzy Syst. – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.jappgeo.2022.104741_bb0120 article-title: A novel shale gas production prediction model based on machine learning and its application in optimization of multistage fractured horizontal wells publication-title: Front. Earth Sci. – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jappgeo.2022.104741_bb0010 article-title: Bagging predictions publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – volume: 93 start-page: 691 year: 2018 ident: 10.1016/j.jappgeo.2022.104741_bb0035 article-title: The economic, social and environmental impact of shale gas exploitation in Romania: a cost-benefit analysis publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2018.05.026 – volume: 10 year: 2020 ident: 10.1016/j.jappgeo.2022.104741_bb0045 article-title: Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach publication-title: Appl. Sci. – volume: 37 start-page: 1 year: 2016 ident: 10.1016/j.jappgeo.2022.104741_bb0020 article-title: Research on convolutional neural network for reservoir parameter prediction publication-title: Tongxin Xuebao/J. Commun. – volume: 179 start-page: 72 year: 2017 ident: 10.1016/j.jappgeo.2022.104741_bb0070 article-title: Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.05.012 – volume: 15 start-page: 54 year: 2003 ident: 10.1016/j.jappgeo.2022.104741_bb0030 article-title: Preliminary study on interpretation of 515 coalbed methane logging data (in Chinese) publication-title: Coal Geol. China – volume: 42 start-page: 1144 year: 2018 ident: 10.1016/j.jappgeo.2022.104741_bb0060 article-title: The prediction of the content and distribution of coalbed gas : a case study in the Qinshui coalfield based on logging publication-title: Geophys. Geochemical Explor. – volume: 9 year: 2019 ident: 10.1016/j.jappgeo.2022.104741_bb0110 article-title: Influencing factors and mathematical prediction of shale adsorbed gas content in the upper triassic yanchang formation in the Ordos basin, China publication-title: Minerals doi: 10.3390/min9050265 – volume: 199 start-page: 88 year: 2017 ident: 10.1016/j.jappgeo.2022.104741_bb0075 article-title: The shale gas revolution: Barriers, sustainability, and emerging opportunities publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.034 – volume: 4 start-page: 135 year: 2020 ident: 10.1016/j.jappgeo.2022.104741_bb0155 article-title: High-precision calculation of gas saturation in organic shale pores using an intelligent fusion algorithm and a multi-mineral model publication-title: Adv. Geo-Energy Res. doi: 10.26804/ager.2020.02.03 – volume: 44 start-page: 513 year: 2017 ident: 10.1016/j.jappgeo.2022.104741_bb0040 article-title: Geological factors controlling shale gas enrichment and high production in Fuling shale gas field publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(17)30060-5 – volume: 2256 year: 2020 ident: 10.1016/j.jappgeo.2022.104741_bb0005 article-title: Total organic carbon prediction of well logs data: Case study Banuwati Shale Member Fm., Asri Basin, Indonesia publication-title: AIP Conf. Proc. doi: 10.1063/5.0014651 – volume: 176 start-page: 664 year: 2019 ident: 10.1016/j.jappgeo.2022.104741_bb0115 article-title: An improved neural network for TOC, S1 and S2 estimation based on conventional well logs publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.01.096 – volume: 180 start-page: 699 year: 2019 ident: 10.1016/j.jappgeo.2022.104741_bb0090 article-title: Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.06.014 – volume: 260 year: 2020 ident: 10.1016/j.jappgeo.2022.104741_bb0065 article-title: Natural gas subsidies in the industrial sector in China: National and regional perspectives publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114329 – volume: 209 year: 2022 ident: 10.1016/j.jappgeo.2022.104741_bb0160 article-title: Key factors of marine shale conductivity in southern China—Part II: the influence of pore system and the development direction of shale gas saturation models publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109516 |
| SSID | ssj0001304 |
| Score | 2.3933575 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 104741 |
| Title | Prediction method and application of shale reservoirs core gas content based on machine learning |
| Volume | 204 |
| WOSCitedRecordID | wos000855625200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0926-9851 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001304 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbo0kN7qKAPQQuVD72tss06ThwfEaJqK4SQStu9pXbiLIkgi5JdBP-e8SMP2oLgQA5RZMUjK_PFMx6Pv0Hokwx94QvGPQqXRyOawi8liSeljOMcLLw0Af1fh-zoKJ7N-LFLCWpMOQFWVfHVFb94UlVDGyhbH519hLo7odAAz6B0uIPa4f4gxR_Xeu_FqNWWh7Z8rP1GtfYPm1MwDGN99Ki-XBR1M9ZsluO5aEzuus4P0OYt01sJ5ybdUrX1JeZ3uLPCubNztbDRks5ZP1yZcOyP0-K6aNtmKwsUUZVd229V2PdWRdmC1sUjYCnbJlx1gUUSeTx2NLJujiU-HcySmh7C0l39M4HbWEI5KWHUc3M6k5BJ__5twuy_DFmXXthmrpWJE5NoMYkV8wytExbyeITW974dzL53dhusuSEba8ffn_f6_N_xDDyZgUtysoFeuY-P9ywGNtGaql6jlwOGyTfoT48GbNGAAQ14gAa8yLFBA-7RgDUaMKABOzRggwashVg04BYNb9HPLwcn-189V1TDEyQiSy_LAxrykAZBTnLC0iCSvlA84oLTgGQy5ZTniqUizcDz0-VbMyr9SNCMTUUQ0OAdGlWLSm0hLAisdqliUwpPJA-5iLhiMpqmIQfh2Tai7QdKUsc4rwufnCX3KmgbTbpuF5Zy5f4O7x_b4QN60SN3B42W9Urtoufp5bJo6o8OFzdJmX_D |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+method+and+application+of+shale+reservoirs+core+gas+content+based+on+machine+learning&rft.jtitle=Journal+of+applied+geophysics&rft.au=Luo%2C+Shiyi&rft.au=Xu%2C+Tianji&rft.au=Wei%2C+Shuijian&rft.date=2022-09-01&rft.issn=0926-9851&rft.volume=204&rft.spage=104741&rft_id=info:doi/10.1016%2Fj.jappgeo.2022.104741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2022_104741 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |