Prediction method and application of shale reservoirs core gas content based on machine learning

Saved in:
Bibliographic Details
Published in:Journal of applied geophysics Vol. 204; p. 104741
Main Authors: Luo, Shiyi, Xu, Tianji, Wei, Shuijian
Format: Journal Article
Language:English
Published: 01.09.2022
ISSN:0926-9851
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
ArticleNumber 104741
Author Luo, Shiyi
Wei, Shuijian
Xu, Tianji
Author_xml – sequence: 1
  givenname: Shiyi
  surname: Luo
  fullname: Luo, Shiyi
– sequence: 2
  givenname: Tianji
  surname: Xu
  fullname: Xu, Tianji
– sequence: 3
  givenname: Shuijian
  surname: Wei
  fullname: Wei, Shuijian
BookMark eNqFkMtqwzAQRbVIoUnaTyjoB5zqZbuiqxL6gkC7aNfuWBonMo5kJFHo3zdOsuqmi2GGC-fCnAWZ-eCRkBvOVpzx6rZf9TCOWwwrwYQ4ZKpWfEbmTIuq0HclvySLlHrGGJdMzcnXe0TrTHbB0z3mXbAU_GHGcXAGjnHoaNrBgDRiwvgdXEzUhIh0C9PhM_pMW0ho6VQCZuc80gEheue3V-SigyHh9XkvyefT48f6pdi8Pb-uHzYFiErkwnZSlbpUUnaiE7WRVcsAdaVBKylsa7TSHdYGjBVKlXWprWpZBcrWHKRUcknKU6-JIaWIXTNGt4f403DWTGqavjmraSY1zUnNgbv_wxmXj4_nCG74h_4FxKpzQw
CitedBy_id crossref_primary_10_1016_j_gsme_2025_09_003
crossref_primary_10_3389_feart_2023_1220189
crossref_primary_10_3390_en16176169
crossref_primary_10_1016_j_jappgeo_2024_105346
crossref_primary_10_1002_ese3_70170
crossref_primary_10_1016_j_coldregions_2023_103946
crossref_primary_10_3390_app15042156
crossref_primary_10_2118_211800_PA
crossref_primary_10_1007_s40789_025_00807_z
crossref_primary_10_1016_j_earscirev_2024_104969
Cites_doi 10.1016/j.apenergy.2015.03.040
10.1016/j.petrol.2020.107801
10.1016/j.jngse.2021.104064
10.1016/j.ipl.2010.05.024
10.1155/2021/7390055
10.1016/j.jngse.2015.07.008
10.3390/en14051461
10.1023/A:1018054314350
10.1016/j.rser.2018.05.026
10.1016/j.coal.2017.05.012
10.3390/min9050265
10.1016/j.apenergy.2017.04.034
10.26804/ager.2020.02.03
10.1016/S1876-3804(17)30060-5
10.1063/5.0014651
10.1016/j.petrol.2019.01.096
10.1016/j.petrol.2019.06.014
10.1016/j.apenergy.2019.114329
10.1016/j.petrol.2021.109516
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2022.104741
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jappgeo_2022_104741
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
~HD
ID FETCH-LOGICAL-a262t-df34595433f2f27c36b0ae969a9432dbc949fe7cacd2445759d4b06a4d71a3343
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855625200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-9851
IngestDate Sat Nov 29 07:06:37 EST 2025
Tue Nov 18 20:59:58 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a262t-df34595433f2f27c36b0ae969a9432dbc949fe7cacd2445759d4b06a4d71a3343
ParticipantIDs crossref_primary_10_1016_j_jappgeo_2022_104741
crossref_citationtrail_10_1016_j_jappgeo_2022_104741
PublicationCentury 2000
PublicationDate 2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-00
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2022
References Yuan (10.1016/j.jappgeo.2022.104741_bb0140) 2015; 148
Passey (10.1016/j.jappgeo.2022.104741_bb0085) 1990; 74
Tang (10.1016/j.jappgeo.2022.104741_bb0110) 2019; 9
Middleton (10.1016/j.jappgeo.2022.104741_bb0075) 2017; 199
Xue (10.1016/j.jappgeo.2022.104741_bb0130) 2021; 196
Siddig (10.1016/j.jappgeo.2022.104741_bb0100) 2021; 2021
Feng (10.1016/j.jappgeo.2022.104741_bb0025) 2015
Mahmoud (10.1016/j.jappgeo.2022.104741_bb0070) 2017; 179
Han (10.1016/j.jappgeo.2022.104741_bb0045) 2020; 10
Lin (10.1016/j.jappgeo.2022.104741_bb0065) 2020; 260
Basyir (10.1016/j.jappgeo.2022.104741_bb0005) 2020; 2256
Liang (10.1016/j.jappgeo.2022.104741_bb0060) 2018; 42
Gao (10.1016/j.jappgeo.2022.104741_bb0030) 2003; 15
Zhu (10.1016/j.jappgeo.2022.104741_bb0155) 2020; 4
Li (10.1016/j.jappgeo.2022.104741_bb0050) 2020; 39
Rui (10.1016/j.jappgeo.2022.104741_bb0090) 2019; 180
Duan (10.1016/j.jappgeo.2022.104741_bb0020) 2016; 37
Tan (10.1016/j.jappgeo.2022.104741_bb0105) 2015; 26
Niu (10.1016/j.jappgeo.2022.104741_bb0080) 2021; 14
Wang (10.1016/j.jappgeo.2022.104741_bb0115) 2019; 176
Grecu (10.1016/j.jappgeo.2022.104741_bb0035) 2018; 93
Guo (10.1016/j.jappgeo.2022.104741_bb0040) 2017; 44
Wang (10.1016/j.jappgeo.2022.104741_bb0120) 2021; 9
Di Lena (10.1016/j.jappgeo.2022.104741_bb0015) 2010; 110
Zhu (10.1016/j.jappgeo.2022.104741_bb0160) 2022; 209
Breiman (10.1016/j.jappgeo.2022.104741_bb0010) 1996; 24
Zeng (10.1016/j.jappgeo.2022.104741_bb0145) 2021; 93
References_xml – volume: 148
  start-page: 49
  year: 2015
  ident: 10.1016/j.jappgeo.2022.104741_bb0140
  article-title: A review of the technical and economic evaluation techniques for shale gas development
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.03.040
– volume: 196
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104741_bb0130
  article-title: A data-driven shale gas production forecasting method based on the multi-objective random forest regression
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107801
– volume: 93
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104741_bb0145
  article-title: Selective methods of TOC content estimation for organic-rich interbedded mudstone source rocks
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.104064
– volume: 110
  start-page: 679
  year: 2010
  ident: 10.1016/j.jappgeo.2022.104741_bb0015
  article-title: Optimal global alignment of signals by maximization of Pearson correlation
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2010.05.024
– volume: 2021
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104741_bb0100
  article-title: Application of various machine learning techniques in predicting total organic carbon from well logs
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/7390055
– volume: 26
  start-page: 792
  year: 2015
  ident: 10.1016/j.jappgeo.2022.104741_bb0105
  article-title: Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale: Acomparative study
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.07.008
– volume: 14
  start-page: 1
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104741_bb0080
  article-title: A production prediction method for shale gas wells based on multiple regression
  publication-title: Energies
  doi: 10.3390/en14051461
– volume: 74
  start-page: 1777
  year: 1990
  ident: 10.1016/j.jappgeo.2022.104741_bb0085
  article-title: A practical model for organic richness from porosity and resistivity logs1
  publication-title: Am. Assoc. Pet. Geol. Bull.
– year: 2015
  ident: 10.1016/j.jappgeo.2022.104741_bb0025
– volume: 39
  start-page: 8823
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104741_bb0050
  article-title: Economic benefit of shale gas exploitation based on back propagation neural network
  publication-title: J. Intell. Fuzzy Syst.
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104741_bb0120
  article-title: A novel shale gas production prediction model based on machine learning and its application in optimization of multistage fractured horizontal wells
  publication-title: Front. Earth Sci.
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jappgeo.2022.104741_bb0010
  article-title: Bagging predictions
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 93
  start-page: 691
  year: 2018
  ident: 10.1016/j.jappgeo.2022.104741_bb0035
  article-title: The economic, social and environmental impact of shale gas exploitation in Romania: a cost-benefit analysis
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2018.05.026
– volume: 10
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104741_bb0045
  article-title: Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach
  publication-title: Appl. Sci.
– volume: 37
  start-page: 1
  year: 2016
  ident: 10.1016/j.jappgeo.2022.104741_bb0020
  article-title: Research on convolutional neural network for reservoir parameter prediction
  publication-title: Tongxin Xuebao/J. Commun.
– volume: 179
  start-page: 72
  year: 2017
  ident: 10.1016/j.jappgeo.2022.104741_bb0070
  article-title: Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2017.05.012
– volume: 15
  start-page: 54
  year: 2003
  ident: 10.1016/j.jappgeo.2022.104741_bb0030
  article-title: Preliminary study on interpretation of 515 coalbed methane logging data (in Chinese)
  publication-title: Coal Geol. China
– volume: 42
  start-page: 1144
  year: 2018
  ident: 10.1016/j.jappgeo.2022.104741_bb0060
  article-title: The prediction of the content and distribution of coalbed gas : a case study in the Qinshui coalfield based on logging
  publication-title: Geophys. Geochemical Explor.
– volume: 9
  year: 2019
  ident: 10.1016/j.jappgeo.2022.104741_bb0110
  article-title: Influencing factors and mathematical prediction of shale adsorbed gas content in the upper triassic yanchang formation in the Ordos basin, China
  publication-title: Minerals
  doi: 10.3390/min9050265
– volume: 199
  start-page: 88
  year: 2017
  ident: 10.1016/j.jappgeo.2022.104741_bb0075
  article-title: The shale gas revolution: Barriers, sustainability, and emerging opportunities
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.034
– volume: 4
  start-page: 135
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104741_bb0155
  article-title: High-precision calculation of gas saturation in organic shale pores using an intelligent fusion algorithm and a multi-mineral model
  publication-title: Adv. Geo-Energy Res.
  doi: 10.26804/ager.2020.02.03
– volume: 44
  start-page: 513
  year: 2017
  ident: 10.1016/j.jappgeo.2022.104741_bb0040
  article-title: Geological factors controlling shale gas enrichment and high production in Fuling shale gas field
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(17)30060-5
– volume: 2256
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104741_bb0005
  article-title: Total organic carbon prediction of well logs data: Case study Banuwati Shale Member Fm., Asri Basin, Indonesia
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0014651
– volume: 176
  start-page: 664
  year: 2019
  ident: 10.1016/j.jappgeo.2022.104741_bb0115
  article-title: An improved neural network for TOC, S1 and S2 estimation based on conventional well logs
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.01.096
– volume: 180
  start-page: 699
  year: 2019
  ident: 10.1016/j.jappgeo.2022.104741_bb0090
  article-title: Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.06.014
– volume: 260
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104741_bb0065
  article-title: Natural gas subsidies in the industrial sector in China: National and regional perspectives
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114329
– volume: 209
  year: 2022
  ident: 10.1016/j.jappgeo.2022.104741_bb0160
  article-title: Key factors of marine shale conductivity in southern China—Part II: the influence of pore system and the development direction of shale gas saturation models
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109516
SSID ssj0001304
Score 2.3933575
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 104741
Title Prediction method and application of shale reservoirs core gas content based on machine learning
Volume 204
WOSCitedRecordID wos000855625200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0926-9851
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001304
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbo0kN7qKAPQQuVD72tss06ThwfEaJqK4SQStu9pXbiLIkgi5JdBP-e8SMP2oLgQA5RZMUjK_PFMx6Pv0Hokwx94QvGPQqXRyOawi8liSeljOMcLLw0Af1fh-zoKJ7N-LFLCWpMOQFWVfHVFb94UlVDGyhbH519hLo7odAAz6B0uIPa4f4gxR_Xeu_FqNWWh7Z8rP1GtfYPm1MwDGN99Ki-XBR1M9ZsluO5aEzuus4P0OYt01sJ5ybdUrX1JeZ3uLPCubNztbDRks5ZP1yZcOyP0-K6aNtmKwsUUZVd229V2PdWRdmC1sUjYCnbJlx1gUUSeTx2NLJujiU-HcySmh7C0l39M4HbWEI5KWHUc3M6k5BJ__5twuy_DFmXXthmrpWJE5NoMYkV8wytExbyeITW974dzL53dhusuSEba8ffn_f6_N_xDDyZgUtysoFeuY-P9ywGNtGaql6jlwOGyTfoT48GbNGAAQ14gAa8yLFBA-7RgDUaMKABOzRggwashVg04BYNb9HPLwcn-189V1TDEyQiSy_LAxrykAZBTnLC0iCSvlA84oLTgGQy5ZTniqUizcDz0-VbMyr9SNCMTUUQ0OAdGlWLSm0hLAisdqliUwpPJA-5iLhiMpqmIQfh2Tai7QdKUsc4rwufnCX3KmgbTbpuF5Zy5f4O7x_b4QN60SN3B42W9Urtoufp5bJo6o8OFzdJmX_D
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+method+and+application+of+shale+reservoirs+core+gas+content+based+on+machine+learning&rft.jtitle=Journal+of+applied+geophysics&rft.au=Luo%2C+Shiyi&rft.au=Xu%2C+Tianji&rft.au=Wei%2C+Shuijian&rft.date=2022-09-01&rft.issn=0926-9851&rft.volume=204&rft.spage=104741&rft_id=info:doi/10.1016%2Fj.jappgeo.2022.104741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2022_104741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon