First-order definability of rational transductions An algebraic approach
The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a rational language in the class of aperiodic languages, i.e., languages recognized by finite automata whose transition relation defines an aperiodic...
Uloženo v:
| Vydáno v: | Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 387 - 396 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
05.07.2016
|
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 9781450343916, 1450343910 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a rational language in the class of aperiodic languages, i.e., languages recognized by finite automata whose transition relation defines an aperiodic congruence. An important corollary of this result is the first-order definability of monadic second-order formulas over finite words.
Our goal is to extend these results to rational transductions, i.e. word functions realized by finite transducers. We take an algebraic approach and consider definability problems of rational transductions in a given variety of congruences (or monoids).
The strength of the algebraic theory of rational languages relies on the existence of a congruence canonically attached to every language, the syntactic congruence. In a similar spirit, Reutenauer and Schützenberger have defined a canonical device for rational transductions, that we extend to establish our main contribution: an effective characterization of V-transductions, i.e. rational transductions realizable by transducers whose transition relation defines a congruence in a (decidable) variety V. In particular, it provides an algorithm to decide the definability of a rational transduction by an aperiodic finite transducer.
Using those results, we show that the FO-definability of a rational transduction is decidable, where FO-definable means definable in a first-order restriction of logical transducers à la Courcelle. |
|---|---|
| AbstractList | The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a rational language in the class of aperiodic languages, i.e., languages recognized by finite automata whose transition relation defines an aperiodic congruence. An important corollary of this result is the first-order definability of monadic second-order formulas over finite words.
Our goal is to extend these results to rational transductions, i.e. word functions realized by finite transducers. We take an algebraic approach and consider definability problems of rational transductions in a given variety of congruences (or monoids).
The strength of the algebraic theory of rational languages relies on the existence of a congruence canonically attached to every language, the syntactic congruence. In a similar spirit, Reutenauer and Schützenberger have defined a canonical device for rational transductions, that we extend to establish our main contribution: an effective characterization of V-transductions, i.e. rational transductions realizable by transducers whose transition relation defines a congruence in a (decidable) variety V. In particular, it provides an algorithm to decide the definability of a rational transduction by an aperiodic finite transducer.
Using those results, we show that the FO-definability of a rational transduction is decidable, where FO-definable means definable in a first-order restriction of logical transducers à la Courcelle. |
| Author | Lhote, Nathan Gauwin, Olivier Filiot, Emmanuel |
| Author_xml | – sequence: 1 givenname: Emmanuel surname: Filiot fullname: Filiot, Emmanuel email: efiliot@ulb.ac.be organization: Université Libre de Bruxelles – sequence: 2 givenname: Olivier surname: Gauwin fullname: Gauwin, Olivier email: olivier.gauwin@labri.fr organization: Université de Bordeaux, LaBRI, CNRS – sequence: 3 givenname: Nathan surname: Lhote fullname: Lhote, Nathan email: nlhote@labri.fr organization: Université de Bordeaux, LaBRI, CNRS, Université Libre de Bruxelles |
| BookMark | eNqNj01LxDAYhAMqqGvPXnv00vq-SfN1lMVVYcGLnkOaD4jWBpJ68N_bxf4AT8MwwzDPNTmf8xwIuUXoEQd-TzVjXPJ-1YFTOCONlmoNgA1Mo7gkTa0fAEBRKg14Reghlbp0ufhQWh9imu2YprT8tDm2xS4pz3Zql2Ln6r_dydYbchHtVEOz6Y68Hx7f9s_d8fXpZf9w7CwVuHTSOiokDxx5FNSNA9qgnNPBSw9MiCg0BMaV4s7JQWvg63GMFK0AjSqyHbn727Xuy4w5f1aDYE6YZsM0G-Za7f9ZNWNJIbJfipFUFA |
| ContentType | Conference Proceeding |
| Copyright | 2016 ACM |
| Copyright_xml | – notice: 2016 ACM |
| DOI | 10.1145/2933575.2934520 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 396 |
| GroupedDBID | 6IE 6IF 6IG 6IL 6IN AAJGR ACM ADPZR ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK GUFHI IEGSK IJVOP OCL RIB RIC RIE RIL RIO |
| ID | FETCH-LOGICAL-a261t-7ac2675e515f62cb41ae8cc9ed7d0366f690e35885cc7499055751f21a60918f3 |
| ISBN | 9781450343916 1450343910 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387609200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jan 31 06:44:04 EST 2024 Wed Jan 31 06:44:03 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | rational word transductions definability problems algebraic characterizations first-order logic |
| Language | English |
| License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org. |
| LinkModel | OpenURL |
| MeetingName | LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science |
| MergedId | FETCHMERGED-LOGICAL-a261t-7ac2675e515f62cb41ae8cc9ed7d0366f690e35885cc7499055751f21a60918f3 |
| OpenAccessLink | https://hal.science/hal-01308509 |
| PageCount | 10 |
| ParticipantIDs | acm_books_10_1145_2933575_2934520 acm_books_10_1145_2933575_2934520_brief |
| PublicationCentury | 2000 |
| PublicationDate | 20160705 |
| PublicationDateYYYYMMDD | 2016-07-05 |
| PublicationDate_xml | – month: 07 year: 2016 text: 20160705 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY, USA |
| PublicationPlace_xml | – name: New York, NY, USA |
| PublicationSeriesTitle | ACM Conferences |
| PublicationTitle | Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationYear | 2016 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0002178901 |
| Score | 2.062455 |
| Snippet | The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a... |
| SourceID | acm |
| SourceType | Publisher |
| StartPage | 387 |
| SubjectTerms | Theory of computation -- Formal languages and automata theory -- Formalisms -- Rewrite systems Theory of computation -- Formal languages and automata theory -- Grammars and context-free languages |
| Subtitle | An algebraic approach |
| Title | First-order definability of rational transductions |
| WOSCitedRecordID | wos000387609200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6qePDkG99EEDyUaN67OUqxerBV8IG3sNnsYqBJpWmr_ntns5s0VUE9eEnDUjYk32Tnm83MNwgdg41YCYmFCebATM_hlkm4gJiHJX6MhR04pU7B4zXu98nTU3jbat1VtTDTAc5z8vYWvvwr1DAGYMvS2T_AXU8KA3AOoMMRYIfjJ0b8rfO5rQeL6vu_axfjthbSP-_0YGoZ4rXv3jOZsjXJ5AcD2XOZqRJA1eaheuubNtVNgSuapVpnO-FC1l2lA53TMaJ16jp4v0SJ0s6KS1KZGlIuvFlG8wmvEzsu6eRV6RjcDFLppOsUoeehat3XL7f31fInZZkLsJ9eo1RxbufCDsosV79ha725YNb2fMstC4EbC6qr3bHyza7qfvt12fekQgYwFxfY5yn8er5jLaAFjG1V0ldvu0EERoAClSV--nK18ld1ea0ABQNnn6aUFIZlDQJyv4o2Z_drzCBeQy2er6OVCjRDg7aBnAZWRhMrYyiMCitjDqtN9NC9uO9cmbo_hkkh7h2bmDIH4j0OlFQEDos9m3LCWMgTnAAxCUQQWtz1CfEZwxDZSrk13xaOTQNgiUS4W2gxH-Z8GxmUcODF4Pg4iWXCBdB-4WDJt1kQeoTuoCO48UiaeRGpWnY_0g8n0g9nB538-J8oBjMRu7-YbQ8tz2xmHy2ORxN-gJbYdJwWo8MS1A-aRFOb |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+31st+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=First-order+definability+of+rational+transductions&rft.au=Filiot%2C+Emmanuel&rft.au=Gauwin%2C+Olivier&rft.au=Lhote%2C+Nathan&rft.series=ACM+Conferences&rft.date=2016-07-05&rft.pub=ACM&rft.isbn=9781450343916&rft.spage=387&rft.epage=396&rft_id=info:doi/10.1145%2F2933575.2934520 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/sc.gif&client=summon&freeimage=true |

