First-order definability of rational transductions An algebraic approach

The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a rational language in the class of aperiodic languages, i.e., languages recognized by finite automata whose transition relation defines an aperiodic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 387 - 396
Hlavní autoři: Filiot, Emmanuel, Gauwin, Olivier, Lhote, Nathan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 05.07.2016
Edice:ACM Conferences
Témata:
ISBN:9781450343916, 1450343910
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a rational language in the class of aperiodic languages, i.e., languages recognized by finite automata whose transition relation defines an aperiodic congruence. An important corollary of this result is the first-order definability of monadic second-order formulas over finite words. Our goal is to extend these results to rational transductions, i.e. word functions realized by finite transducers. We take an algebraic approach and consider definability problems of rational transductions in a given variety of congruences (or monoids). The strength of the algebraic theory of rational languages relies on the existence of a congruence canonically attached to every language, the syntactic congruence. In a similar spirit, Reutenauer and Schützenberger have defined a canonical device for rational transductions, that we extend to establish our main contribution: an effective characterization of V-transductions, i.e. rational transductions realizable by transducers whose transition relation defines a congruence in a (decidable) variety V. In particular, it provides an algorithm to decide the definability of a rational transduction by an aperiodic finite transducer. Using those results, we show that the FO-definability of a rational transduction is decidable, where FO-definable means definable in a first-order restriction of logical transducers à la Courcelle.
AbstractList The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a rational language in the class of aperiodic languages, i.e., languages recognized by finite automata whose transition relation defines an aperiodic congruence. An important corollary of this result is the first-order definability of monadic second-order formulas over finite words. Our goal is to extend these results to rational transductions, i.e. word functions realized by finite transducers. We take an algebraic approach and consider definability problems of rational transductions in a given variety of congruences (or monoids). The strength of the algebraic theory of rational languages relies on the existence of a congruence canonically attached to every language, the syntactic congruence. In a similar spirit, Reutenauer and Schützenberger have defined a canonical device for rational transductions, that we extend to establish our main contribution: an effective characterization of V-transductions, i.e. rational transductions realizable by transducers whose transition relation defines a congruence in a (decidable) variety V. In particular, it provides an algorithm to decide the definability of a rational transduction by an aperiodic finite transducer. Using those results, we show that the FO-definability of a rational transduction is decidable, where FO-definable means definable in a first-order restriction of logical transducers à la Courcelle.
Author Lhote, Nathan
Gauwin, Olivier
Filiot, Emmanuel
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Filiot
  fullname: Filiot, Emmanuel
  email: efiliot@ulb.ac.be
  organization: Université Libre de Bruxelles
– sequence: 2
  givenname: Olivier
  surname: Gauwin
  fullname: Gauwin, Olivier
  email: olivier.gauwin@labri.fr
  organization: Université de Bordeaux, LaBRI, CNRS
– sequence: 3
  givenname: Nathan
  surname: Lhote
  fullname: Lhote, Nathan
  email: nlhote@labri.fr
  organization: Université de Bordeaux, LaBRI, CNRS, Université Libre de Bruxelles
BookMark eNqNj01LxDAYhAMqqGvPXnv00vq-SfN1lMVVYcGLnkOaD4jWBpJ68N_bxf4AT8MwwzDPNTmf8xwIuUXoEQd-TzVjXPJ-1YFTOCONlmoNgA1Mo7gkTa0fAEBRKg14Reghlbp0ufhQWh9imu2YprT8tDm2xS4pz3Zql2Ln6r_dydYbchHtVEOz6Y68Hx7f9s_d8fXpZf9w7CwVuHTSOiokDxx5FNSNA9qgnNPBSw9MiCg0BMaV4s7JQWvg63GMFK0AjSqyHbn727Xuy4w5f1aDYE6YZsM0G-Za7f9ZNWNJIbJfipFUFA
ContentType Conference Proceeding
Copyright 2016 ACM
Copyright_xml – notice: 2016 ACM
DOI 10.1145/2933575.2934520
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 396
GroupedDBID 6IE
6IF
6IG
6IL
6IN
AAJGR
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
IJVOP
OCL
RIB
RIC
RIE
RIL
RIO
ID FETCH-LOGICAL-a261t-7ac2675e515f62cb41ae8cc9ed7d0366f690e35885cc7499055751f21a60918f3
ISBN 9781450343916
1450343910
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387609200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 31 06:44:04 EST 2024
Wed Jan 31 06:44:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords rational word transductions
definability problems
algebraic characterizations
first-order logic
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
LinkModel OpenURL
MeetingName LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science
MergedId FETCHMERGED-LOGICAL-a261t-7ac2675e515f62cb41ae8cc9ed7d0366f690e35885cc7499055751f21a60918f3
OpenAccessLink https://hal.science/hal-01308509
PageCount 10
ParticipantIDs acm_books_10_1145_2933575_2934520
acm_books_10_1145_2933575_2934520_brief
PublicationCentury 2000
PublicationDate 20160705
PublicationDateYYYYMMDD 2016-07-05
PublicationDate_xml – month: 07
  year: 2016
  text: 20160705
  day: 05
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationYear 2016
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002178901
Score 2.062455
Snippet The algebraic theory of rational languages has provided powerful decidability results. Among them, one of the most fundamental is the definability of a...
SourceID acm
SourceType Publisher
StartPage 387
SubjectTerms Theory of computation -- Formal languages and automata theory -- Formalisms -- Rewrite systems
Theory of computation -- Formal languages and automata theory -- Grammars and context-free languages
Subtitle An algebraic approach
Title First-order definability of rational transductions
WOSCitedRecordID wos000387609200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6qePDkG99EEDyUaN67OUqxerBV8IG3sNnsYqBJpWmr_ntns5s0VUE9eEnDUjYk32Tnm83MNwgdg41YCYmFCebATM_hlkm4gJiHJX6MhR04pU7B4zXu98nTU3jbat1VtTDTAc5z8vYWvvwr1DAGYMvS2T_AXU8KA3AOoMMRYIfjJ0b8rfO5rQeL6vu_axfjthbSP-_0YGoZ4rXv3jOZsjXJ5AcD2XOZqRJA1eaheuubNtVNgSuapVpnO-FC1l2lA53TMaJ16jp4v0SJ0s6KS1KZGlIuvFlG8wmvEzsu6eRV6RjcDFLppOsUoeehat3XL7f31fInZZkLsJ9eo1RxbufCDsosV79ha725YNb2fMstC4EbC6qr3bHyza7qfvt12fekQgYwFxfY5yn8er5jLaAFjG1V0ldvu0EERoAClSV--nK18ld1ea0ABQNnn6aUFIZlDQJyv4o2Z_drzCBeQy2er6OVCjRDg7aBnAZWRhMrYyiMCitjDqtN9NC9uO9cmbo_hkkh7h2bmDIH4j0OlFQEDos9m3LCWMgTnAAxCUQQWtz1CfEZwxDZSrk13xaOTQNgiUS4W2gxH-Z8GxmUcODF4Pg4iWXCBdB-4WDJt1kQeoTuoCO48UiaeRGpWnY_0g8n0g9nB538-J8oBjMRu7-YbQ8tz2xmHy2ORxN-gJbYdJwWo8MS1A-aRFOb
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+31st+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=First-order+definability+of+rational+transductions&rft.au=Filiot%2C+Emmanuel&rft.au=Gauwin%2C+Olivier&rft.au=Lhote%2C+Nathan&rft.series=ACM+Conferences&rft.date=2016-07-05&rft.pub=ACM&rft.isbn=9781450343916&rft.spage=387&rft.epage=396&rft_id=info:doi/10.1145%2F2933575.2934520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/sc.gif&client=summon&freeimage=true