Supervised Radio Frequency Interference Detection with SNNs

Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes. Addressing RFI involves intricate heuristic algorithms, manual examination, and, increasingly, machine learning...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 International Conference on Neuromorphic Systems (ICONS) s. 102 - 109
Hlavní autoři: Pritchard, Nicholas J., Wicenec, Andreas, Bennamoun, Mohammed, Dodson, Richard
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 30.07.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes. Addressing RFI involves intricate heuristic algorithms, manual examination, and, increasingly, machine learning methods. Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach. In this study, we cast RFI detection as a supervised multi-variate time-series segmentation problem. Notably, our investigation explores the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm. We train a small twolayer fully connected SNN on simulated data derived from the Hydrogen Epoch of Reionization Array (HERA) telescope and perform extensive hyper-parameter optimization. Results reveal that latency encoding exhibits superior performance, achieving a per-pixel accuracy of 98.8% and an f1-score of 0.761. Remarkably, these metrics approach those of contemporary RFI detection algorithms, notwithstanding the simplicity and compactness of our proposed network architecture. This study underscores the potential of RFI detection as a benchmark problem for SNN researchers, emphasizing the efficacy of SNNs in addressing complex time-series segmentation tasks in radio astronomy.
DOI:10.1109/ICONS62911.2024.00023