Software Model Evolution with Large Language Models: Experiments on Simulated, Public, and Industrial Datasets
Modeling structure and behavior of software systems plays a crucial role in the industrial practice of software engineering. As with other software engineering artifacts, software models are subject to evolution. Supporting modelers in evolving software models with recommendations for model completi...
Uložené v:
| Vydané v: | Proceedings / International Conference on Software Engineering s. 950 - 962 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
26.04.2025
|
| Predmet: | |
| ISSN: | 1558-1225 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Modeling structure and behavior of software systems plays a crucial role in the industrial practice of software engineering. As with other software engineering artifacts, software models are subject to evolution. Supporting modelers in evolving software models with recommendations for model completions is still an open problem, though. In this paper, we explore the potential of large language models for this task. In particular, we propose an approach, RAMC, leveraging large language models, model histories, and retrieval-augmented generation for model completion. Through experiments on three datasets, including an industrial application, one public open-source community dataset, and one controlled collection of simulated model repositories, we evaluate the potential of large language models for model completion with RAMC. We found that large language models are indeed a promising technology for supporting software model evolution (62.30% semantically correct completions on real-world industrial data and up to 86.19% type-correct completions). The general inference capabilities of large language models are particularly useful when dealing with concepts for which there are few, noisy, or no examples at all. |
|---|---|
| AbstractList | Modeling structure and behavior of software systems plays a crucial role in the industrial practice of software engineering. As with other software engineering artifacts, software models are subject to evolution. Supporting modelers in evolving software models with recommendations for model completions is still an open problem, though. In this paper, we explore the potential of large language models for this task. In particular, we propose an approach, RAMC, leveraging large language models, model histories, and retrieval-augmented generation for model completion. Through experiments on three datasets, including an industrial application, one public open-source community dataset, and one controlled collection of simulated model repositories, we evaluate the potential of large language models for model completion with RAMC. We found that large language models are indeed a promising technology for supporting software model evolution (62.30% semantically correct completions on real-world industrial data and up to 86.19% type-correct completions). The general inference capabilities of large language models are particularly useful when dealing with concepts for which there are few, noisy, or no examples at all. |
| Author | Welter, Alisa Tinnes, Christof Apel, Sven |
| Author_xml | – sequence: 1 givenname: Christof surname: Tinnes fullname: Tinnes, Christof email: christof.tinnes@siemens.com organization: Siemens AG,Garching bei München,Germany – sequence: 2 givenname: Alisa surname: Welter fullname: Welter, Alisa email: welter@cs.uni-saarland.de organization: Saarland University,Saarbrücken,Germany – sequence: 3 givenname: Sven surname: Apel fullname: Apel, Sven email: apel@cs.uni-saarland.de organization: Saarland University,Saarbrücken,Germany |
| BookMark | eNotkNFKwzAYhaMo6ObeYBd5gHUmf5Y28U5m1cFEYXo90uTvjHTpaFKnb2_B3Zxz8_FxOCNyEdqAhEw5m3PO9O1quSmlFItiDgzknDHO4YxMdKGVEFwymWt-Tq65lCrjAPKKjGL8YozlC62vSdi0dTqaDulL67Ch5Xfb9Mm3gR59-qRr0-1wyLDrze7ExDta_hyw83sMKdIB3fh935iEbkbf-qrxdkZNcHQVXB9T501DH0wyEVO8IZe1aSJOTj0mH4_l-_I5W78-rZb368xAzlJmlbAcoZZQKSFNLmprhXBOL5AJtA5yy3juWCUF1mAL7ngB0lQoQbDCghiT6b_XI-L2MGw13e92OAy0Ukr8AQcWXMM |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICSE55347.2025.00112 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331505691 |
| EISSN | 1558-1225 |
| EndPage | 962 |
| ExternalDocumentID | 11029888 |
| Genre | orig-research |
| GroupedDBID | -~X .4S .DC 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO FEDTE I-F IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a260t-c83c1e2f52b835a63fcc33dd94e03ecd26c016d0b53ef2c71d1725abe52307c23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538318100074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:40:13 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a260t-c83c1e2f52b835a63fcc33dd94e03ecd26c016d0b53ef2c71d1725abe52307c23 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_11029888 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-26 |
| PublicationDateYYYYMMDD | 2025-04-26 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / International Conference on Software Engineering |
| PublicationTitleAbbrev | ICSE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0006499 |
| Score | 2.290509 |
| Snippet | Modeling structure and behavior of software systems plays a crucial role in the industrial practice of software engineering. As with other software engineering... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 950 |
| SubjectTerms | ai4se Biological system modeling copilots Data models generative ai intelligent modeling assistant Large language models model completion model-driven engineering Real-time systems Retrieval augmented generation Semantics Software Software product lines Software systems Source coding |
| Title | Software Model Evolution with Large Language Models: Experiments on Simulated, Public, and Industrial Datasets |
| URI | https://ieeexplore.ieee.org/document/11029888 |
| WOSCitedRecordID | wos001538318100074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFA5TdtjJ_XDsNznsaKcmTdPu6iobiAhuw5ukL68gbHXY6v79vbRV2WGHQQmlBAJJmve97-W9j7F7At20axA8FaL0_NSVvAWrPJH4fqpSDGxZjuF9pMfjcDaLJnWyepkLg4jl5TN8cK9lLN8uYe2osi6ZKhGRy9ZgDa11lay1O3YDwu51bly_F3VfBtNYKelr8gGFKgMO4peCSmlAhq1_Dn3M2vtUPD7ZGZkTdoDZKWtttRh4_WuesWxK5-m3WSF36mYfPN7Ue4o7ppWP3IVvaitysuqTP_J4V98_59R1uvh0al5oO7yi8zrcZJbv5T34kynI7BV5m70N49fBs1drKXiGPJbCg1BCH0WqREKYywQyBZDS2sjHnkSwIgACf7aXKImpAN23hGyUSdCxxhqEPGfNbJnhBePCN1qibwDIlzKoTWh74ENCDxBaCC5Z283f_KsqlzHfTt3VH9-v2ZFbIheiEcENaxarNd6yQ9gUi3x1Vy7yD6wOqiw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF5aW2hP9mHpu3vo0bS6j0R7tYpSK4K2eJPN7ASENhYT7d_vbBKVHnoohCWEhYXdzc433-zMx9g9gW7aNQiebqD0VORK3oLVngiVinSEvs3KMbz3g8GgMZk0h0WyepYLg4jZ5TN8cK9ZLN_OYemoskcyVaJJLtsu29NKiXqerrU5eH1C70V2XL3WfOy1Rm2tpQrICxQ6CzmIXxoqmQnplP85-BGrbJPx-HBjZo7ZDsYnrLxWY-DFz3nK4hGdqN9mgdzpm33w9qrYVdxxrbzvrnxTm9OTeZ_kibc3Ff4TTl1Hs0-n54W2ynNCr8pNbPlW4IM_m5QMX5pU2FunPW51vUJNwTPks6QeNCTUUURahIS6jC8jACmtbSqsSQQrfCD4Z2uhlhgJCOqWsI02ITreOAAhz1gpnsd4zrhQJpCoDAB5UwYD07A1UBDSA4QX_AtWcfM3_coLZkzXU3f5x_c7dtAdv_an_d7g5YoduuVyARvhX7NSuljiDduHVTpLFrfZgv8AsNqtcw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=Software+Model+Evolution+with+Large+Language+Models%3A+Experiments+on+Simulated%2C+Public%2C+and+Industrial+Datasets&rft.au=Tinnes%2C+Christof&rft.au=Welter%2C+Alisa&rft.au=Apel%2C+Sven&rft.date=2025-04-26&rft.pub=IEEE&rft.eissn=1558-1225&rft.spage=950&rft.epage=962&rft_id=info:doi/10.1109%2FICSE55347.2025.00112&rft.externalDocID=11029888 |