Unleashing the True Potential of Semantic-Based Log Parsing with Pre-Trained Language Models
Software-intensive systems often produce console logs for troubleshooting purposes. Log parsing, which aims at parsing a log message into a specific log template, typically serves as the first step toward automated log analytics. To better comprehend the semantic information of log messages, many se...
Uloženo v:
| Vydáno v: | Proceedings / International Conference on Software Engineering s. 975 - 987 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.04.2025
|
| Témata: | |
| ISSN: | 1558-1225 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Software-intensive systems often produce console logs for troubleshooting purposes. Log parsing, which aims at parsing a log message into a specific log template, typically serves as the first step toward automated log analytics. To better comprehend the semantic information of log messages, many semantic-based log parsers have been proposed. These log parsers fine-tune a small pre-trained language model (PLM) such as RoBERTa on a few labelled log samples. With the increasing popularity of large language models (LLMs), some recent studies also propose to leverage LLMs such as ChatGPT through in-context learning for automated log parsing and obtain better results than previous semantic-based log parsers with small PLMs. In this paper, we show that semantic-based log parsers with small PLMs can actually achieve better or comparable performance to state-of-the-art LLM-based log parsing models while being more efficient and cost-effective. We propose Unleash, a novel semantic-based log parsing approach, which incorporates three enhancement methods to boost the performance of PLMs for log parsing, including (1) an entropy-based ranking method to select the most informative log samples; (2) a contrastive learning method to enhance the fine-tuning process; and (3) an inference optimization method to improve the log parsing performance. We evaluate Unleash on a set of large-scale, public log datasets and the experimental results show that Unleash is effective and efficient compared to state-of-the-art log parsers. |
|---|---|
| AbstractList | Software-intensive systems often produce console logs for troubleshooting purposes. Log parsing, which aims at parsing a log message into a specific log template, typically serves as the first step toward automated log analytics. To better comprehend the semantic information of log messages, many semantic-based log parsers have been proposed. These log parsers fine-tune a small pre-trained language model (PLM) such as RoBERTa on a few labelled log samples. With the increasing popularity of large language models (LLMs), some recent studies also propose to leverage LLMs such as ChatGPT through in-context learning for automated log parsing and obtain better results than previous semantic-based log parsers with small PLMs. In this paper, we show that semantic-based log parsers with small PLMs can actually achieve better or comparable performance to state-of-the-art LLM-based log parsing models while being more efficient and cost-effective. We propose Unleash, a novel semantic-based log parsing approach, which incorporates three enhancement methods to boost the performance of PLMs for log parsing, including (1) an entropy-based ranking method to select the most informative log samples; (2) a contrastive learning method to enhance the fine-tuning process; and (3) an inference optimization method to improve the log parsing performance. We evaluate Unleash on a set of large-scale, public log datasets and the experimental results show that Unleash is effective and efficient compared to state-of-the-art log parsers. |
| Author | Le, Van-Hoang Zhang, Hongyu Xiao, Yi |
| Author_xml | – sequence: 1 givenname: Van-Hoang surname: Le fullname: Le, Van-Hoang email: hoang.le@newcastle.edu.au organization: The University of Newcastle,Australia – sequence: 2 givenname: Yi surname: Xiao fullname: Xiao, Yi email: yixiao@cqu.edu.cn organization: Chongqing University,China – sequence: 3 givenname: Hongyu surname: Zhang fullname: Zhang, Hongyu email: hyzhang@cqu.edu.cn organization: Chongqing University,China |
| BookMark | eNotkMFKw0AURUdRsK39gy7mB1Lfm8kkmaWWqoWIgaY7obw0r-lIOpFMivj3tujqcjncs7hjceM7z0LMEOaIYB9Wi_XSGB2ncwXKzAEwja_E1KY20xoNmMTitRihMVmESpk7MQ7hEwCS2NqR-Nj4likcnG_kcGBZ9ieWRTewHxy1stvLNR_pXHbREwWuZd41sqA-XAbfbjjIoueo7Mn5CyTfnKhh-dbV3IZ7cbunNvD0Pydi87wsF69R_v6yWjzmEakEhmiXMtaqImNxp1VVMdQU6yrJ1J4pQSKCjDOycW0TA1wz6VQrRqqsJjSxnojZn9cx8_ard0fqf7bne5TNlNW_sjdWSA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICSE55347.2025.00174 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Business |
| EISBN | 9798331505691 |
| EISSN | 1558-1225 |
| EndPage | 987 |
| ExternalDocumentID | 11029829 |
| Genre | orig-research |
| GroupedDBID | -~X .4S .DC 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO FEDTE I-F IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a260t-c7e1d2ba591c32bbe0da43b682fea61aaa08e8a94d9650edea3732e1ab93a1543 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538318100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:40:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a260t-c7e1d2ba591c32bbe0da43b682fea61aaa08e8a94d9650edea3732e1ab93a1543 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_11029829 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-26 |
| PublicationDateYYYYMMDD | 2025-04-26 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / International Conference on Software Engineering |
| PublicationTitleAbbrev | ICSE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0006499 |
| Score | 2.3102424 |
| Snippet | Software-intensive systems often produce console logs for troubleshooting purposes. Log parsing, which aims at parsing a log message into a specific log... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 975 |
| SubjectTerms | Business Chatbots Contrastive learning Large language models log analytics log parsing Optimization methods pre-trained LMs Scalability Semantics Software engineering |
| Title | Unleashing the True Potential of Semantic-Based Log Parsing with Pre-Trained Language Models |
| URI | https://ieeexplore.ieee.org/document/11029829 |
| WOSCitedRecordID | wos001538318100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFA5TxtjJzTn2mxx27WyTNk2uE2UDEUEFDwN5SV6H4NqhdX__klrdLjvs1rSQwHuk770v78tHyGMIUqF1G1CHSRjEBlgAOnPFCrOZMcpkEitPD9PRSM7nalyT1SsuDCJWzWf45B-rs3xbmK2HyrouVDElmWqQRpqKHVnr8NsVLnevuXFRqLqvvUk_SXicuhqQedwk8j19vxRUqgAyaP1z6TPS-aHi0fEhyJyTI8zb5GTfrt4mrb0sA6136QV5m-Ur3GkkUZfe0el66-YoSt8XBCtaZHSCH86gSxM8uxhm6bB4p2OoUAPqcVm3IAZTrx3hP9aAJvWqaatNh8wG_WnvJahFFAJwpUoZmBQjyzQkKjKcaY2hhZhrIVmGICIACCVKULFVLllDi8BTzjACrTi4_IpfkmZe5HhFKLrajCkGQpo45oZBKnScWhTaunGkr0nHG27xubsnY7G32c0f72_JqfeNP5th4o40S2eOe3JsvsrlZv1QefcbTC-nUw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UjXpCEeNve_A62bruR68SCMRJSICEgwl5bd8MCW4Ghn-_7RjoxYO3dUva5L10772v7-tHyKMLsUBtNqB0A9fhCpgDMjXFCtOpUkKlMZaeTqLBIJ5OxbAiq5dcGEQsm8_wyT6WZ_k6V2sLlbVMqGIiZmKfHAScM3dD19r9eEOTvVfsOM8VrX571AkCn0emCmQWOfFsV98vDZUyhHTr_1z8lDR_yHh0uAszZ2QPswY52jasN0h9K8xAq316Tt4m2QI3KknUJHh0vFybOfLCdgbBguYpHeGHMelcOc8mimma5O90CCVuQC0yaxZEZ2zVI-zHCtKkVjdtsWqSSbczbvecSkbBAVOsFI6K0NNMQiA85TMp0dXAfRnGLEUIPQBwY4xBcC1MuoYawY98hh5I4YPJsPwLUsvyDC8JRVOdMcEgjBXnvmIQhZJHGkOpzdiTV6RpDTf73NyUMdva7PqP9w_kuDd-TWZJf_ByQ06sn-xJDQtvSa0wprkjh-qrmK-W96WnvwEuBKqa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=Unleashing+the+True+Potential+of+Semantic-Based+Log+Parsing+with+Pre-Trained+Language+Models&rft.au=Le%2C+Van-Hoang&rft.au=Xiao%2C+Yi&rft.au=Zhang%2C+Hongyu&rft.date=2025-04-26&rft.pub=IEEE&rft.eissn=1558-1225&rft.spage=975&rft.epage=987&rft_id=info:doi/10.1109%2FICSE55347.2025.00174&rft.externalDocID=11029829 |