Spiking Neural Networks as a Controller for Emergent Swarm Agents

Drones which can swarm and loiter in a certain area cost hundreds of dollars, but mosquitos can do the same and are essentially worthless. To control swarms of low-cost robots, researchers may end up spending countless hours brainstorming robot configurations and policies to "organically"...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 International Conference on Neuromorphic Systems (ICONS) s. 319 - 326
Hlavní autoři: Zhu, Kevin, Mattson, Connor, Snyder, Shay, Vega, Ricardo, Brown, Daniel S., Parsa, Maryam, Nowzari, Cameron
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 30.07.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Drones which can swarm and loiter in a certain area cost hundreds of dollars, but mosquitos can do the same and are essentially worthless. To control swarms of low-cost robots, researchers may end up spending countless hours brainstorming robot configurations and policies to "organically" create behaviors which do not need expensive sensors and perception. Existing research explores the possible emergent behaviors in swarms of robots with only a binary sensor and a simple but hand-picked controller structure. Even agents in this highly limited sensing, actuation, and computational capability class can exhibit relatively complex global behaviors such as aggregation, milling, and dispersal, but finding the local interaction rules that enable more collective behaviors remains a significant challenge. This paper investigates the feasibility of training spiking neural networks to find those local interaction rules that result in particular emergent behaviors. In this paper, we focus on simulating a specific milling behavior already known to be producible using very simple binary sensing and acting agents. To do this, we use evolutionary algorithms to evolve not only the parameters (the weights, biases, and delays) of a spiking neural network, but also its structure. To create a baseline, we also show an evolutionary search strategy over the parameters for the incumbent hand-picked binary controller structure. Our simulations show that spiking neural networks can be evolved in binary sensing agents to form a mill.
AbstractList Drones which can swarm and loiter in a certain area cost hundreds of dollars, but mosquitos can do the same and are essentially worthless. To control swarms of low-cost robots, researchers may end up spending countless hours brainstorming robot configurations and policies to "organically" create behaviors which do not need expensive sensors and perception. Existing research explores the possible emergent behaviors in swarms of robots with only a binary sensor and a simple but hand-picked controller structure. Even agents in this highly limited sensing, actuation, and computational capability class can exhibit relatively complex global behaviors such as aggregation, milling, and dispersal, but finding the local interaction rules that enable more collective behaviors remains a significant challenge. This paper investigates the feasibility of training spiking neural networks to find those local interaction rules that result in particular emergent behaviors. In this paper, we focus on simulating a specific milling behavior already known to be producible using very simple binary sensing and acting agents. To do this, we use evolutionary algorithms to evolve not only the parameters (the weights, biases, and delays) of a spiking neural network, but also its structure. To create a baseline, we also show an evolutionary search strategy over the parameters for the incumbent hand-picked binary controller structure. Our simulations show that spiking neural networks can be evolved in binary sensing agents to form a mill.
Author Zhu, Kevin
Mattson, Connor
Nowzari, Cameron
Parsa, Maryam
Vega, Ricardo
Brown, Daniel S.
Snyder, Shay
Author_xml – sequence: 1
  givenname: Kevin
  surname: Zhu
  fullname: Zhu, Kevin
  email: kzhu4@gmu.edu
  organization: George Mason University,Fairfax,USA
– sequence: 2
  givenname: Connor
  surname: Mattson
  fullname: Mattson, Connor
  email: c.mattson@utah.edu
  organization: University of Utah,Salt Lake City,USA
– sequence: 3
  givenname: Shay
  surname: Snyder
  fullname: Snyder, Shay
  email: ssnyde9@gmu.edu
  organization: George Mason University,Fairfax,USA
– sequence: 4
  givenname: Ricardo
  surname: Vega
  fullname: Vega, Ricardo
  email: rvega7@gmu.edu
  organization: George Mason University,Fairfax,USA
– sequence: 5
  givenname: Daniel S.
  surname: Brown
  fullname: Brown, Daniel S.
  email: daniel.s.brown@utah.edu
  organization: University of Utah,Salt Lake City,USA
– sequence: 6
  givenname: Maryam
  surname: Parsa
  fullname: Parsa, Maryam
  email: mparsa@gmu.edu
  organization: George Mason University,Fairfax,USA
– sequence: 7
  givenname: Cameron
  surname: Nowzari
  fullname: Nowzari, Cameron
  email: cnowzari@gmu.edu
  organization: George Mason University,Fairfax,USA
BookMark eNotjs1Kw0AURkfQhda-gcK8QOKdSebOzDKEqoXSLqLrcpveKaH5KZNI8e2NKHxwvtXhPIjbfuhZiGcFqVLgX9blbluh9kqlGnSeAoAxN2LprXeZgQwdGn8viurSnJv-JLf8FamdMV2HeB4lzZPl0E9xaFuOMgxRrjqOJ-4nWV0pdrL4_eOjuAvUjrz850J8vq4-yvdks3tbl8UmIY0wJWQOSPZgtUM7MzifYz03IJjcMGgHts7rgAEM0zEYe6Tc6ho8MRvnKVuIpz9vw8z7S2w6it97BRZnCWY_LZxHxw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICONS62911.2024.00055
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350368659
EndPage 326
ExternalDocumentID 10766566
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-a260t-a5b6a7b72867a7bf8946c86560545e02807c4cf6f05eadf57da472c09aee589a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001462433900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:01:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a260t-a5b6a7b72867a7bf8946c86560545e02807c4cf6f05eadf57da472c09aee589a3
PageCount 8
ParticipantIDs ieee_primary_10766566
PublicationCentury 2000
PublicationDate 2024-July-30
PublicationDateYYYYMMDD 2024-07-30
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-30
  day: 30
PublicationDecade 2020
PublicationTitle 2024 International Conference on Neuromorphic Systems (ICONS)
PublicationTitleAbbrev ICONS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9003451
Snippet Drones which can swarm and loiter in a certain area cost hundreds of dollars, but mosquitos can do the same and are essentially worthless. To control swarms of...
SourceID ieee
SourceType Publisher
StartPage 319
SubjectTerms Evolutionary algorithms
Heuristic algorithms
Measurement
Milling
Neuromorphics
Particle swarm optimization
Robot sensing systems
Search problems
Sensors
Spiking neural networks
Swarming Behaviors
Training
Title Spiking Neural Networks as a Controller for Emergent Swarm Agents
URI https://ieeexplore.ieee.org/document/10766566
WOSCitedRecordID wos001462433900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62ePCkYsWdHLxGM-kkmRxlaFGQWqhKbyWTeYFCbcvMVP--L5m6XDwIgYQQCNm_t3wvhFw7Dz6xpmC-n0iWei-YVQJYIkEgStLQj96Er496NMqmUzPektUjFwYAovMZ3IRitOWXK7cJqjI84VoF_NEhHa1VS9basnISbm4f8qfRRAk8vij3iRAVmwcG369fU-KjMdz_Z3cHpPdDv6Pj74flkOzA8gjvv_U8qLVpCKdhF5hF_-2aWkw0bz3OF1BRRKF00JIqGzr5sNUbvQvlukdehoPn_J5t_z9gFqWMhllZKKsLLTKlMfeZSZXLQrQchD0QbKLapc4rzyXuBy91aVMtHDcWQGbG9o9Jd7lawgmhPpUlTzwKBxYxXAFFCcI4ENiuwLmCU9IL45-t2xAXs6-hn_1Rf072whRHJSe_IN2m2sAl2XXvzbyuruLCfALEkpES
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl6ju-km2T1KaWmxroVW6a1ksxMo1G3ZbvXvO0nXx8WDEEgIgZD3N5P5Zgi5NRZsqJOM2VYoWGQtZ1pyYKEAjihJQctbE74OVJrGk0kyrMnqngsDAN74DO5c0f_l5wuzdqoyPOFKOvyxTXZc6KyarlXzcsIgue-3n9OR5HiAUfLjzi924Dh8v-Km-Geje_DPDg9J84eAR4ffT8sR2YLiGG_A5cwptqlzqKHnmHkL7hXVmGh7Y3M-h5IiDqWdDa2yoqMPXb7RB1deNclLtzNu91gdAYFplDMqpkUmtcoUj6XC3MZJJE3s_OUg8AH3K6pMZKy0gcAdYYXKdaS4CRINIOJEt05Io1gUcEqojUQehBbFA40oLoMsB54Y4Nguw7mCM9J0458uN04upl9DP_-j_obs9cZPg-mgnz5ekH033V7lGVySRlWu4Yrsmvdqtiqv_SJ9AoT2lFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Neuromorphic+Systems+%28ICONS%29&rft.atitle=Spiking+Neural+Networks+as+a+Controller+for+Emergent+Swarm+Agents&rft.au=Zhu%2C+Kevin&rft.au=Mattson%2C+Connor&rft.au=Snyder%2C+Shay&rft.au=Vega%2C+Ricardo&rft.date=2024-07-30&rft.pub=IEEE&rft.spage=319&rft.epage=326&rft_id=info:doi/10.1109%2FICONS62911.2024.00055&rft.externalDocID=10766566