Scenario-Driven and Context-Aware Automated Accessibility Testing for Android Apps
Mobile accessibility is increasingly important nowadays as it enables people with disabilities to use mobile applications to perform daily tasks. Ensuring mobile accessibility not only benefits those with disabilities but also enhances the user experience for all users, making applications more intu...
Uložené v:
| Vydané v: | Proceedings / International Conference on Software Engineering s. 2777 - 2789 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
26.04.2025
|
| Predmet: | |
| ISSN: | 1558-1225 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mobile accessibility is increasingly important nowadays as it enables people with disabilities to use mobile applications to perform daily tasks. Ensuring mobile accessibility not only benefits those with disabilities but also enhances the user experience for all users, making applications more intuitive and user-friendly. Although numerous tools are available for testing and detecting accessibility issues in Android applications, a large number of false negatives and false positives persist due to limitations in the existing approaches, i.e., low coverage of UI scenarios and lack of consideration of runtime context. To address these problems, in this paper, we propose a scenario-driven exploration method for improving the coverage of UI scenarios, thereby detecting accessibility issues within the application, and ultimately reducing false negatives. Furthermore, to reduce false positives caused by not considering the runtime context, we propose a context-aware detection method that provides a more fine-grained detection capability. Our experimental results reveal that A11yScan can detect 1.7X more issues surpassing current state-of-the-art approaches like Xbot ( \mathbf{3, 9 9 1} vs. \mathbf{2, 3 2 1} ), thereby reducing the false negative rate by \mathbf{4 1. 8 4 \%} . Additionally, it outperforms established UI exploration techniques such as SceneDroid (952 vs. 661 UI scenarios), while achieving comparable activity coverage to recent leading GUI testing tools like GPTDroid on the available dataset (73 % vs. 71%). Meanwhile, with the context-aware detection method, A11yScan effectively reduces the false positive rate by 21 %, validated with a 90.56 % accuracy rate through a user study. |
|---|---|
| AbstractList | Mobile accessibility is increasingly important nowadays as it enables people with disabilities to use mobile applications to perform daily tasks. Ensuring mobile accessibility not only benefits those with disabilities but also enhances the user experience for all users, making applications more intuitive and user-friendly. Although numerous tools are available for testing and detecting accessibility issues in Android applications, a large number of false negatives and false positives persist due to limitations in the existing approaches, i.e., low coverage of UI scenarios and lack of consideration of runtime context. To address these problems, in this paper, we propose a scenario-driven exploration method for improving the coverage of UI scenarios, thereby detecting accessibility issues within the application, and ultimately reducing false negatives. Furthermore, to reduce false positives caused by not considering the runtime context, we propose a context-aware detection method that provides a more fine-grained detection capability. Our experimental results reveal that A11yScan can detect 1.7X more issues surpassing current state-of-the-art approaches like Xbot ( \mathbf{3, 9 9 1} vs. \mathbf{2, 3 2 1} ), thereby reducing the false negative rate by \mathbf{4 1. 8 4 \%} . Additionally, it outperforms established UI exploration techniques such as SceneDroid (952 vs. 661 UI scenarios), while achieving comparable activity coverage to recent leading GUI testing tools like GPTDroid on the available dataset (73 % vs. 71%). Meanwhile, with the context-aware detection method, A11yScan effectively reduces the false positive rate by 21 %, validated with a 90.56 % accuracy rate through a user study. |
| Author | Liu, Zibo Zhang, Yuxin Chen, Sen Fan, Lingling Xie, Xiaofei |
| Author_xml | – sequence: 1 givenname: Yuxin surname: Zhang fullname: Zhang, Yuxin organization: College of Intelligence and Computing, Tianjin University,Tianjin,China – sequence: 2 givenname: Sen surname: Chen fullname: Chen, Sen email: tigersenchen@163.com organization: College of Cyber Science, Nankai University,Tianjin,China – sequence: 3 givenname: Xiaofei surname: Xie fullname: Xie, Xiaofei organization: Singapore Management University,Singapore,Singapore – sequence: 4 givenname: Zibo surname: Liu fullname: Liu, Zibo organization: College of Intelligence and Computing, Tianjin University,Tianjin,China – sequence: 5 givenname: Lingling surname: Fan fullname: Fan, Lingling organization: College of Cyber Science, Nankai University,Tianjin,China |
| BookMark | eNotkMtKAzEUQKMoaGv_oIv8wNS8J1kOY9VCQbB1Xe5kbiTSZsokPvr3FnR1NoezOBNylYaEhMw5W3DO3P2q3Sy1lqpeCCb0gjHm5AWZudpZKblm2jh-SW651rbiQugbMsn546wZ5dwted14TDDGoXoY4xcmCqmn7ZAK_pSq-YYRafNZhgMU7GnjPeYcu7iP5US3mEtM7zQMI21SPw7xbByP-Y5cB9hnnP1zSt4el9v2uVq_PK3aZl2BMKxUoJSFgKq2PaBQHYNOCilD8J3XlnNQPigPvZHSmCC4BmW9Vc52FkQduJyS-V83IuLuOMYDjKfdeYpwtTLyFztQUuw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICSE55347.2025.00093 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331505691 |
| EISSN | 1558-1225 |
| EndPage | 2789 |
| ExternalDocumentID | 11029746 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62472309 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .4S .DC 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO FEDTE I-F IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a260t-a448afe478dae24b0ab3233ffcbc5811a4cf4cad63366f215a48c8498b8a27f13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538318100217&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:40:13 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a260t-a448afe478dae24b0ab3233ffcbc5811a4cf4cad63366f215a48c8498b8a27f13 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_11029746 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-26 |
| PublicationDateYYYYMMDD | 2025-04-26 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / International Conference on Software Engineering |
| PublicationTitleAbbrev | ICSE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0006499 |
| Score | 2.2903442 |
| Snippet | Mobile accessibility is increasingly important nowadays as it enables people with disabilities to use mobile applications to perform daily tasks. Ensuring... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2777 |
| SubjectTerms | Accessibility testing Accuracy Android app Context-aware analysis Graphical user interfaces Mobile accessibility Mobile applications People with disabilities Runtime Testing UI exploration User experience |
| Title | Scenario-Driven and Context-Aware Automated Accessibility Testing for Android Apps |
| URI | https://ieeexplore.ieee.org/document/11029746 |
| WOSCitedRecordID | wos001538318100217&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EePCEPzCKP9KD1wpbu7U7EoRoYggRNNzIW_dquGxkDI3_vW0Z6MWDOzXLkiZt1vd9fe97HyF3GTexFIIzhEAwAVKwBECwgKeG2ydCnzF9e5bjsZrPk0ktVvdaGET0xWd474Y-l58VeuOuyro2VIUW_8YN0pBSbsVa-2M3tti91sYFvaT7NJgOo4gLaTlg6O5Nei63_MtBxQeQUeufUx-T9o8Uj072QeaEHGB-Slo7LwZa_5pn5GWqMbe8t2APpTvAKOQZ9a2nLLPtf0KJtL-pCotPMaN975K4rYv9ojPXaCN_pxa-UlffWCztF6vVuk1eR8PZ4JHVfgkMLCupGFiqBQaFVBlgKNIepDzk3Bid6kgFAQhthIYs5jyOjY31IJRWIlGpglCagJ-TZl7keEGodtYvoU6444vcgIokWuRhA5nUmATRJWm7NVqsti0xFrvl6fzx_oocuW1waZgwvibNqtzgDTnUH9VyXd76jfwGi9yepw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSEPzD-tgevFbp2a3ckCIGIhAgabqTrXg2XjcDQ-N_bloFePLhTsyxp0mZ939f3vvchdJ8yEwnOGQFFOeFKcBIrxQlliWH2CcFnTN_6YjCQk0k8LMXqXgsDAL74DB7c0Ofy01yv3FVZ3YaqwOLfaBfthZwHdC3X2h68kUXvpTqONuJ6rzVqhyHjwrLAwN2cNFx2-ZeHig8hneo_Jz9CtR8xHh5uw8wx2oHsBFU3bgy4_DlP0ctIQ2aZb04eF-4IwypLsW8-Zblt81MtADdXRW4RKqS46X0S15WxX3jsWm1k79gCWOwqHPOZ_WI-X9bQa6c9bnVJ6ZhAlOUlBVGWbCkDXMhUQcCThkpYwJgxOtGhpFRxbbhWacRYFBkb7RWXWvJYJlIFwlB2hipZnsE5wtqZvwQ6Zo4xMqNkKMBiDxvKhIaYhheo5tZoOl83xZhulufyj_d36KA7fu5P-73B0xU6dFvikjJBdI0qxWIFN2hffxSz5eLWb-o3-6mh7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=Scenario-Driven+and+Context-Aware+Automated+Accessibility+Testing+for+Android+Apps&rft.au=Zhang%2C+Yuxin&rft.au=Chen%2C+Sen&rft.au=Xie%2C+Xiaofei&rft.au=Liu%2C+Zibo&rft.date=2025-04-26&rft.pub=IEEE&rft.eissn=1558-1225&rft.spage=2777&rft.epage=2789&rft_id=info:doi/10.1109%2FICSE55347.2025.00093&rft.externalDocID=11029746 |