Neuromorphic Wireless Device-Edge Co-Inference via the Directed Information Bottleneck

An important use case of next-generation wireless systems is device-edge co-inference, where a semantic task is partitioned between a device and an edge server. The device carries out data collection and partial processing of the data, while the remote server completes the given task based on inform...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2024 International Conference on Neuromorphic Systems (ICONS) s. 16 - 23
Hlavní autori: Ke, Yuzhen, Utkovski, Zoran, Heshmati, Mehdi, Simeone, Osvaldo, Dommel, Johannes, Stanczak, Slawomir
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 30.07.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An important use case of next-generation wireless systems is device-edge co-inference, where a semantic task is partitioned between a device and an edge server. The device carries out data collection and partial processing of the data, while the remote server completes the given task based on information received from the device. It is often required that processing and communication be run as efficiently as possible at the device, while more computing resources are available at the edge. To address such scenarios, we introduce a new system solution, termed neuromorphic wireless device-edge co-inference. According to it, the device runs sensing, processing, and communication units using neuromorphic hardware, while the server employs conventional radio and computing technologies. The proposed system is designed using a transmitter-centric information-theoretic criterion that targets a reduction of the communication overhead, while retaining the most relevant information for the end-to-end semantic task of interest. Numerical results on standard data sets validate the proposed architecture, and a preliminary testbed realization is reported.
AbstractList An important use case of next-generation wireless systems is device-edge co-inference, where a semantic task is partitioned between a device and an edge server. The device carries out data collection and partial processing of the data, while the remote server completes the given task based on information received from the device. It is often required that processing and communication be run as efficiently as possible at the device, while more computing resources are available at the edge. To address such scenarios, we introduce a new system solution, termed neuromorphic wireless device-edge co-inference. According to it, the device runs sensing, processing, and communication units using neuromorphic hardware, while the server employs conventional radio and computing technologies. The proposed system is designed using a transmitter-centric information-theoretic criterion that targets a reduction of the communication overhead, while retaining the most relevant information for the end-to-end semantic task of interest. Numerical results on standard data sets validate the proposed architecture, and a preliminary testbed realization is reported.
Author Simeone, Osvaldo
Ke, Yuzhen
Dommel, Johannes
Stanczak, Slawomir
Utkovski, Zoran
Heshmati, Mehdi
Author_xml – sequence: 1
  givenname: Yuzhen
  surname: Ke
  fullname: Ke, Yuzhen
  organization: Fraunhofer Heinrich Hertz Institute,Department of Wireless Communications and Networks,Berlin,Germany
– sequence: 2
  givenname: Zoran
  surname: Utkovski
  fullname: Utkovski, Zoran
  organization: Fraunhofer Heinrich Hertz Institute,Department of Wireless Communications and Networks,Berlin,Germany
– sequence: 3
  givenname: Mehdi
  surname: Heshmati
  fullname: Heshmati, Mehdi
  organization: Fraunhofer Heinrich Hertz Institute,Department of Wireless Communications and Networks,Berlin,Germany
– sequence: 4
  givenname: Osvaldo
  surname: Simeone
  fullname: Simeone, Osvaldo
  organization: King's College,KCLIP, CIIPS,Department of Engineering,London,UK
– sequence: 5
  givenname: Johannes
  surname: Dommel
  fullname: Dommel, Johannes
  organization: Fraunhofer Heinrich Hertz Institute,Department of Wireless Communications and Networks,Berlin,Germany
– sequence: 6
  givenname: Slawomir
  surname: Stanczak
  fullname: Stanczak, Slawomir
  organization: Fraunhofer Heinrich Hertz Institute,Department of Wireless Communications and Networks,Berlin,Germany
BookMark eNotjF1LwzAYRiPohc79A4X8gdY3H02bS-2mFsZ24dflyJI3LrgmI60D_70FhQfOxTk8V-Q8poiE3DIoGQN917Wb9YvimrGSA5clADB2Rua61o2oQKhGVfqSvK_xO6c-5eM-WPoRMh5wGOgCT8FisXSfSNtUdNFjxmiRnoKh4x7pYirtiI5OKuXejCFF-pDG8YAR7dc1ufDmMOD8nzPy9rh8bZ-L1eapa-9XheEKxqIBydAb4aXz2jjrpTCiYQ0KLiV3UMmdF9NUbYV34HdV5bRUYDm6Gg2KGbn5-w2IuD3m0Jv8s2VQK1UpJn4B0yVQhA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICONS62911.2024.00011
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350368659
EndPage 23
ExternalDocumentID 10766561
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-a260t-8041efa3f4df9adcf43a3818e32442d054bf3bf367c3fd0fb55d9460c2ed7eae3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001462433900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:01:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a260t-8041efa3f4df9adcf43a3818e32442d054bf3bf367c3fd0fb55d9460c2ed7eae3
PageCount 8
ParticipantIDs ieee_primary_10766561
PublicationCentury 2000
PublicationDate 2024-July-30
PublicationDateYYYYMMDD 2024-07-30
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-30
  day: 30
PublicationDecade 2020
PublicationTitle 2024 International Conference on Neuromorphic Systems (ICONS)
PublicationTitleAbbrev ICONS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9006001
Snippet An important use case of next-generation wireless systems is device-edge co-inference, where a semantic task is partitioned between a device and an edge...
SourceID ieee
SourceType Publisher
StartPage 16
SubjectTerms Computer architecture
Computers
directed information bottleneck
edge intelligence
Hardware
Neuromorphics
Performance evaluation
Robot sensing systems
semantic communications
Semantics
Servers
spiking neural networks
Wireless communication
Wireless sensor networks
Title Neuromorphic Wireless Device-Edge Co-Inference via the Directed Information Bottleneck
URI https://ieeexplore.ieee.org/document/10766561
WOSCitedRecordID wos001462433900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46PHhSceJvcvAazdquWa_WDQcyB-rYbaR5LzLUdsxtf7_vZXV68SD0EBpI4QvvV5rve0JcUdBPeUolmGmVAJIf7EQt5QukYG9S7QLLdfRgBoPOeJwNa7J64MIgYrh8htc8DP_yoXJLPiojCzcp5R9U7GwbY9ZkrZqV09LZTT9_HDylEZkv1X0Rq2Jrbgz0q2tKCBq9vX9-bl80f-h3crgJLAdiC8tDMQoyGh8V4TJ1ki-tvpOTknfIpq668Ioyr1R_s8BqaiUld3Lt0xBkTTzijZC3FUsXl-jemuKl133O71XdFEFZKj0WivWC0NvYJ-AzC84nseWoi5QZJRFQBlb4mJ7UuNiD9kW7DVlCmEcIBi3GR6JRViUeC9kGcnTWkc9jQi1C4cEZ7zKP3mlMixPRZFAms7XuxeQbj9M_3p-JXcY9nHzqc9FYzJd4IXbcajH9nF-G3foCggmZwg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI3QQIITIIb4JgeugaxN2_XK2LSJUSYxpt2mNHHQBLRobPv92FkZXDgg9VA1UivZ8rOd5j0zdoVJP6YloSCVQllAHGwGDeFywGSfxNJ4luuon2RZczxOBxVZ3XNhAMAfPoNruvX_8m1pFrRVhhGexFh_YLOzGSkVNFZ0rYqX05DpTa_1mD3FAQYwdn4B6WJLGg30a26KTxud3X9-cI_Vfwh4fLBOLftsA4oDNvJCGu8lWmZqOB1bfUOY4ndAwS7a9gV4qxS99QuWU82xvOMrVAPLK-oRuYLfliReXIB5rbPnTnvY6opqLILQ2HzMBSkGgdOhU9al2hqnQk15F7A2UoHFGix3IV5xYkJnpcujyKYKrR6ATUBDeMhqRVnAEeORRajTBlGPKLVgc2dN4kzqwBkJcX7M6mSUycdK-WLybY-TP55fsu3u8KE_6fey-1O2Qz7w-6DyjNXmswWcsy2znE8_Zxfec1-t4Z0J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Neuromorphic+Systems+%28ICONS%29&rft.atitle=Neuromorphic+Wireless+Device-Edge+Co-Inference+via+the+Directed+Information+Bottleneck&rft.au=Ke%2C+Yuzhen&rft.au=Utkovski%2C+Zoran&rft.au=Heshmati%2C+Mehdi&rft.au=Simeone%2C+Osvaldo&rft.date=2024-07-30&rft.pub=IEEE&rft.spage=16&rft.epage=23&rft_id=info:doi/10.1109%2FICONS62911.2024.00011&rft.externalDocID=10766561