Estimating Post-Synaptic Effects for Online Training of Feed-Forward SNNs

Facilitating online learning in spiking neural networks (SNNs) is a key step in developing event-based models that can adapt to changing environments and learn from continuous data streams in real-time. Although forward-mode differentiation enables online learning, its computational requirements res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 International Conference on Neuromorphic Systems (ICONS) s. 264 - 271
Hlavní autoři: Summe, Thomas M., Schaefer, Clemens JS, Joshi, Siddharth
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 30.07.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Facilitating online learning in spiking neural networks (SNNs) is a key step in developing event-based models that can adapt to changing environments and learn from continuous data streams in real-time. Although forward-mode differentiation enables online learning, its computational requirements restrict scalability. This is typically addressed through approximations that limit learning in deep models. In this study, we propose Online Training with Postsynaptic Estimates (OTPE) for training feed-forward SNNs, which approximates Real-Time Recurrent Learning (RTRL) by incorporating temporal dynamics not captured by current approximations, such as Online Training Through Time (OTTT) and Online Spatio-Temporal Learning (OSTL). We show improved scaling for multi-layer networks using a novel approximation of temporal effects on the subsequent layer's activity. This approximation incurs minimal overhead in the time and space complexity compared to similar algorithms, and the calculation of temporal effects remains local to each layer. We characterize the learning performance of our proposed algorithms on multiple SNN model configurations for rate-based and time-based encoding. OTPE exhibits the highest directional alignment to exact gradients, calculated with backpropagation through time (BPTT), in deep networks and, on time-based encoding, outperforms other approximate methods. We also observe sizeable gains in average performance over similar algorithms in offline training of Spiking Heidelberg Digits with equivalent hyper-parameters (OTTT/OSTL - 70.5%; OTPE - 75.2%; BPTT - 78.1%).
DOI:10.1109/ICONS62911.2024.00046