Advanced Deep Learning with Python Design and Implement Advanced Next-Generation AI Solutions Using TensorFlow and Pytorch

This book is an expert-level guide to master the neural network variants using the Python ecosystem. You will gain the skills to build smarter, faster, and efficient deep learning systems with practical examples. By the end of this book, you will be up to date with the latest advances and current re...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Vasilev, Ivan
Médium: E-kniha
Jazyk:angličtina
Vydáno: Birmingham Packt Publishing, Limited 2019
Packt Publishing Limited
Packt Publishing
Vydání:1
Témata:
ISBN:178995617X, 9781789956177
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • The limitations of convolutional networks -- Capsules -- Dynamic routing -- The structure of the capsule network -- Summary -- Chapter 4: Object Detection and Image Segmentation -- Introduction to object detection -- Approaches to object detection -- Object detection with YOLOv3 -- A code example of YOLOv3 with OpenCV -- Object detection with Faster R-CNN -- Region proposal network -- Detection network -- Implementing Faster R-CNN with PyTorch -- Introducing image segmentation -- Semantic segmentation with U-Net -- Instance segmentation with Mask R-CNN -- Implementing Mask R-CNN with PyTorch -- Summary -- Chapter 5: Generative Models -- Intuition and justification of generative models -- Introduction to VAEs -- Generating new MNIST digits with VAE -- Introduction to GANs -- Training GANs -- Training the discriminator -- Training the generator -- Putting it all together -- Problems with training GANs -- Types of GAN -- Deep Convolutional GAN -- Implementing DCGAN -- Conditional GAN -- Implementing CGAN -- Wasserstein GAN -- Implementing WGAN -- Image-to-image translation with CycleGAN -- Implementing CycleGAN -- Building the generator and discriminator -- Putting it all together -- Introducing artistic style transfer -- Summary -- Section 3: Natural Language and Sequence Processing -- Chapter 6: Language Modeling -- Understanding n-grams -- Introducing neural language models -- Neural probabilistic language model -- Word2Vec -- CBOW -- Skip-gram -- fastText -- Global Vectors for Word Representation model -- Implementing language models -- Training the embedding model -- Visualizing embedding vectors -- Summary -- Chapter 7: Understanding Recurrent Networks -- Introduction to RNNs -- RNN implementation and training -- Backpropagation through time -- Vanishing and exploding gradients -- Introducing long short-term memory -- Implementing LSTM
  • Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Core Concepts -- Chapter 1: The Nuts and Bolts of Neural Networks -- The mathematical apparatus of NNs -- Linear algebra -- Vector and matrix operations -- Introduction to probability -- Probability and sets -- Conditional probability and the Bayes rule -- Random variables and probability distributions -- Probability distributions -- Information theory -- Differential calculus -- A short introduction to NNs -- Neurons -- Layers as operations -- NNs -- Activation functions -- The universal approximation theorem -- Training NNs -- Gradient descent -- Cost functions -- Backpropagation -- Weight initialization -- SGD improvements -- Summary -- Section 2: Computer Vision -- Chapter 2: Understanding Convolutional Networks -- Understanding CNNs -- Types of convolutions -- Transposed convolutions -- 1×1 convolutions -- Depth-wise separable convolutions -- Dilated convolutions -- Improving the efficiency of CNNs -- Convolution as matrix multiplication -- Winograd convolutions -- Visualizing CNNs -- Guided backpropagation -- Gradient-weighted class activation mapping -- CNN regularization -- Introducing transfer learning -- Implementing transfer learning with PyTorch -- Transfer learning with TensorFlow 2.0 -- Summary -- Chapter 3: Advanced Convolutional Networks -- Introducing AlexNet -- An introduction to Visual Geometry Group -- VGG with PyTorch and TensorFlow -- Understanding residual networks -- Implementing residual blocks -- Understanding Inception networks -- Inception v1 -- Inception v2 and v3 -- Inception v4 and Inception-ResNet -- Introducing Xception -- Introducing MobileNet -- An introduction to DenseNets -- The workings of neural architecture search -- Introducing capsule networks
  • Introducing gated recurrent units -- Implementing GRUs -- Implementing text classification -- Summary -- Chapter 8: Sequence-to-Sequence Models and Attention -- Introducing seq2seq models -- Seq2seq with attention -- Bahdanau attention -- Luong attention -- General attention -- Implementing seq2seq with attention -- Implementing the encoder -- Implementing the decoder -- Implementing the decoder with attention -- Training and evaluation -- Understanding transformers -- The transformer attention -- The transformer model -- Implementing transformers -- Multihead attention -- Encoder -- Decoder -- Putting it all together -- Transformer language models -- Bidirectional encoder representations from transformers -- Input data representation -- Pretraining -- Fine-tuning -- Transformer-XL -- Segment-level recurrence with state reuse -- Relative positional encodings -- XLNet -- Generating text with a transformer language model -- Summary -- Section 4: A Look to the Future -- Chapter 9: Emerging Neural Network Designs -- Introducing Graph NNs -- Recurrent GNNs -- Convolutional Graph Networks -- Spectral-based convolutions -- Spatial-based convolutions with attention -- Graph autoencoders -- Neural graph learning -- Implementing graph regularization -- Introducing memory-augmented NNs -- Neural Turing machines -- MANN* -- Summary -- Chapter 10: Meta Learning -- Introduction to meta learning -- Zero-shot learning -- One-shot learning -- Meta-training and meta-testing -- Metric-based meta learning -- Matching networks for one-shot learning -- Siamese networks -- Implementing Siamese networks -- Prototypical networks -- Optimization-based learning -- Summary -- Chapter 11: Deep Learning for Autonomous Vehicles -- Introduction to AVs -- Brief history of AV research -- Levels of automation -- Components of an AV system -- Environment perception -- Sensing
  • Localization -- Moving object detection and tracking -- Path planning -- Introduction to 3D data processing -- Imitation driving policy -- Behavioral cloning with PyTorch -- Generating the training dataset -- Implementing the agent neural network -- Training -- Letting the agent drive -- Putting it all together -- Driving policy with ChauffeurNet -- Input and output representations -- Model architecture -- Training -- Summary -- Other Books You May Enjoy -- Index
  • Advanced Deep Learning with Python: Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch