NeuraChip: Accelerating GNN Computations with a Hash-based Decoupled Spatial Accelerator

Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-euclidean data across various domains, ranging from social network analysis to bioinformatics. Despite their effectiveness, their adoption has not been pervasive because of scalability challenges associated with large-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) S. 946 - 960
Hauptverfasser: Shivdikar, Kaustubh, Agostini, Nicolas Bohm, Jayaweera, Malith, Jonatan, Gilbert, Abellan, Jose L., Joshi, Ajay, Kim, John, Kaeli, David
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.06.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-euclidean data across various domains, ranging from social network analysis to bioinformatics. Despite their effectiveness, their adoption has not been pervasive because of scalability challenges associated with large-scale graph datasets, particularly when leveraging message passing. They exhibit irregular sparsity patterns, resulting in unbalanced compute resource utilization. Prior accelerators investigating Gustavson's technique adopted look-ahead buffers for prefetching data, aiming to prevent compute stalls. However, these solutions lead to inefficient use of the on-chip memory, leading to redundant data residing in cache.To tackle these challenges, we introduce NeuraChip, a novel GNN spatial accelerator based on Gustavson's algorithm. NeuraChip decouples the multiplication and addition computations in sparse matrix multiplication. This separation allows for independent exploitation of their unique data dependencies, facilitating efficient resource allocation. We introduce a rolling eviction strategy to mitigate data idling in on-chip memory as well as address the prevalent issue of memory bloat in sparse graph computations. Furthermore, the compute resource load balancing is achieved through a dynamic reseeding hash-based mapping, ensuring uniform utilization of computing resources agnostic of sparsity patterns. Finally, we present NeuraSim, an open-source, cycle-accurate, multi-threaded, modular simulator for comprehensive performance analysis.Overall, NeuraChip presents a significant improvement, yielding an average speedup of 22.1 \times over Intel's MKL, 17.1 \times over NVIDIA's cuSPARSE, 16.7 \times over AMD's hipSPARSE, and 1.5 \times over prior state-of-the-art SpGEMM accelerator and 1.3 \times over GNN accelerator. The source code for our open-sourced simulator and performance visualizer is publicly accessible on GitHub 1 . CCS CONCEPTS * Computer systems organization → Multicore architectures; Interconnection architectures; * Computing methodologies → Neural networks; * Theory of computation → Graph algorithms analysis; * Hardware → Hardware accelerators. 1 https://github.com/NeuraChip/neurachip
AbstractList Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-euclidean data across various domains, ranging from social network analysis to bioinformatics. Despite their effectiveness, their adoption has not been pervasive because of scalability challenges associated with large-scale graph datasets, particularly when leveraging message passing. They exhibit irregular sparsity patterns, resulting in unbalanced compute resource utilization. Prior accelerators investigating Gustavson's technique adopted look-ahead buffers for prefetching data, aiming to prevent compute stalls. However, these solutions lead to inefficient use of the on-chip memory, leading to redundant data residing in cache.To tackle these challenges, we introduce NeuraChip, a novel GNN spatial accelerator based on Gustavson's algorithm. NeuraChip decouples the multiplication and addition computations in sparse matrix multiplication. This separation allows for independent exploitation of their unique data dependencies, facilitating efficient resource allocation. We introduce a rolling eviction strategy to mitigate data idling in on-chip memory as well as address the prevalent issue of memory bloat in sparse graph computations. Furthermore, the compute resource load balancing is achieved through a dynamic reseeding hash-based mapping, ensuring uniform utilization of computing resources agnostic of sparsity patterns. Finally, we present NeuraSim, an open-source, cycle-accurate, multi-threaded, modular simulator for comprehensive performance analysis.Overall, NeuraChip presents a significant improvement, yielding an average speedup of 22.1 \times over Intel's MKL, 17.1 \times over NVIDIA's cuSPARSE, 16.7 \times over AMD's hipSPARSE, and 1.5 \times over prior state-of-the-art SpGEMM accelerator and 1.3 \times over GNN accelerator. The source code for our open-sourced simulator and performance visualizer is publicly accessible on GitHub 1 . CCS CONCEPTS * Computer systems organization → Multicore architectures; Interconnection architectures; * Computing methodologies → Neural networks; * Theory of computation → Graph algorithms analysis; * Hardware → Hardware accelerators. 1 https://github.com/NeuraChip/neurachip
Author Shivdikar, Kaustubh
Jayaweera, Malith
Kim, John
Kaeli, David
Joshi, Ajay
Jonatan, Gilbert
Agostini, Nicolas Bohm
Abellan, Jose L.
Author_xml – sequence: 1
  givenname: Kaustubh
  surname: Shivdikar
  fullname: Shivdikar, Kaustubh
  email: shivdikar.k@northeastern.edu
  organization: Northeastern University
– sequence: 2
  givenname: Nicolas Bohm
  surname: Agostini
  fullname: Agostini, Nicolas Bohm
  email: bohmagostini.n@northeastern.edu
  organization: Northeastern University
– sequence: 3
  givenname: Malith
  surname: Jayaweera
  fullname: Jayaweera, Malith
  email: malithjayaweera.d@northeastern.edu
  organization: Northeastern University
– sequence: 4
  givenname: Gilbert
  surname: Jonatan
  fullname: Jonatan, Gilbert
  email: gilbertjonatan@kaist.ac.kr
  organization: KAIST
– sequence: 5
  givenname: Jose L.
  surname: Abellan
  fullname: Abellan, Jose L.
  email: jlabellan@um.es
  organization: Universidad de Murcia
– sequence: 6
  givenname: Ajay
  surname: Joshi
  fullname: Joshi, Ajay
  email: joshi@bu.edu
  organization: Boston University
– sequence: 7
  givenname: John
  surname: Kim
  fullname: Kim, John
  email: jjk12@kaist.ac.kr
  organization: KAIST
– sequence: 8
  givenname: David
  surname: Kaeli
  fullname: Kaeli, David
  email: d.kaeli@northeastern.edu
  organization: Northeastern University
BookMark eNpFj8FKw0AURUdQUGv-oIv5gdQ3mcy8GXclalsodVEFd-U1eTGBNAmZFPHvjSi4uvfC4cC9FZdt17IQcwULpcDfb_bZ0nhAXCSQpAsAQH0hIo_eaQM6scapaxGFUB_BgkeNztyI9x2fB8qqun-Qyzznhgca6_ZDrnY7mXWn_jxOu2uD_KzHSpJcU6jiIwUu5CPn3blvprbvJ4iaf0M33ImrkprA0V_OxNvz02u2jrcvq0223MaUGDfGZaEZy9zlirwHTjEh9JYtaDDOKGsL6zU7hpLSwhiLSU4erQZyWGit9EzMf701Mx_6oT7R8HVQPxctov4GfRBShQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCA59077.2024.00073
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350326581
EndPage 960
ExternalDocumentID 10609677
Genre orig-research
GrantInformation_xml – fundername: Samsung
  funderid: 10.13039/100004358
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a258t-fd3e7fc8c1a990e472a796e6030585166d693e8e0fa4d55672ca97630a87d3313
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001290320700063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:34:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a258t-fd3e7fc8c1a990e472a796e6030585166d693e8e0fa4d55672ca97630a87d3313
PageCount 15
ParticipantIDs ieee_primary_10609677
PublicationCentury 2000
PublicationDate 2024-June-29
PublicationDateYYYYMMDD 2024-06-29
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-29
  day: 29
PublicationDecade 2020
PublicationTitle 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)
PublicationTitleAbbrev ISCA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060973785
Score 2.2816432
Snippet Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-euclidean data across various domains, ranging from social network analysis...
SourceID ieee
SourceType Publisher
StartPage 946
SubjectTerms Computer architecture
Decoupled Computations
Graph neural networks
Graph Neural Networks (GNN)
Hardware-software co-design
On-chip Memory
Organizations
Prefetching
Scalability
Social networking (online)
Source coding
Sparse Matrix Multiplication (SpGEMM)
Spatial Accelerators
Title NeuraChip: Accelerating GNN Computations with a Hash-based Decoupled Spatial Accelerator
URI https://ieeexplore.ieee.org/document/10609677
WOSCitedRecordID wos001290320700063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUoYmACRBHf8sAaSOzY57BVhVKWqBIgdauM7dBKKK36we_nzmkpCwOblSGRzrbu3uXee4zd2OrduYqmp4RHgEIcXQOVTDJvlTXam-DyaDYBZWmGw2KwJqtHLkwIIQ6fhVtaxn_5fupW1CrDG66x4gZosRYANGStzeHRpDsDRq3pcVla3D2_dDsKwR8gDBQkkp2SO_ovE5WYQ3oH__z6IWtv2Xh88JNnjthOqI_ZkFQ1bHc8md3zjnOYPGgr6w_-VJa8sWpoenGcOq3c8r5djBPKWZ4_IORczT5xRYbEeAC3b5jO2-yt9_ja7Sdrl4TECmWWSeVlgMoZl1nMLCEHYaHQQdNNxnJKa68LGUxIK5t7pTQIZ7EGkak14KXM5Anbrad1OGVcRuHSDHGrCDnisoJ8OLBecFhVeq_gjLUpLKNZI4Qx2kTk_I_nF2yfIk-TVaK4ZLvL-SpcsT33tZws5tdx-74BK9SZ_w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIMEJEEXs-MA1kNjxEm5VWVpRokoUqbfK2A6thNKqC9_PjNNSLhy4WTkkksfWmzeZN4-Qa1O8W1tg9xRzQFBQo6tVwaPEGWG0dNrbNJhNqDzX_X7WXYrVgxbGex-az_wNLsO_fDe2CyyVwQ2XkHErtUm2RJqypJJrrY6PxMkzSoulQC6Js9v2a7MhgP4pIIIMx2TH6I_-y0YloMjj3j-_v0_qaz0e7f4gzQHZ8OUh6eNcDdMcjiZ3tGEtwAcGs_ygT3lOK7OGqhpHsdZKDW2Z2TBC1HL0HkjnYvIJK7QkhiO4fsN4Widvjw-9Zita-iREhgk9jwrHvSqstokBbPGpYkZl0ku8y5BQSelkxr32cWFSJ4RUzBrIQnhstHKcJ_yI1Mpx6Y8J5WF0aQLMlfkUmFmGThyQMVjIK50T6oTUcVsGk2oUxmC1I6d_PL8iO63eS2fQaefPZ2QXo4B9Viw7J7X5dOEvyLb9mo9m08sQym9hc51G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+ACM%2FIEEE+51st+Annual+International+Symposium+on+Computer+Architecture+%28ISCA%29&rft.atitle=NeuraChip%3A+Accelerating+GNN+Computations+with+a+Hash-based+Decoupled+Spatial+Accelerator&rft.au=Shivdikar%2C+Kaustubh&rft.au=Agostini%2C+Nicolas+Bohm&rft.au=Jayaweera%2C+Malith&rft.au=Jonatan%2C+Gilbert&rft.date=2024-06-29&rft.pub=IEEE&rft.spage=946&rft.epage=960&rft_id=info:doi/10.1109%2FISCA59077.2024.00073&rft.externalDocID=10609677