MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems

Training and deploying large-scale machine learning models is time-consuming, requires significant distributed computing infrastructures, and incurs high operational costs. Our analysis, grounded in real-world large model training on datacenter-scale infrastructures, reveals that 14~32% of all GPU h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) s. 818 - 833
Hlavní autoři: Hsia, Samuel, Golden, Alicia, Acun, Bilge, Ardalani, Newsha, DeVito, Zachary, Wei, Gu-Yeon, Brooks, David, Wu, Carole-Jean
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.