Enabling Efficient Large Recommendation Model Training with Near CXL Memory Processing

Personalized recommendation systems have become one of the most important Internet services nowadays. A critical challenge of training and deploying the recommendation models is their high memory capacity and bandwidth demands, with the embedding layers occupying hundreds of GBs to TBs of storage. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) S. 382 - 395
Hauptverfasser: Liu, Haifeng, Zheng, Long, Huang, Yu, Zhou, Jingyi, Liu, Chaoqiang, Wang, Runze, Liao, Xiaofei, Jin, Hai, Xue, Jingling
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.06.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!