Applications of Machine Learning in Big-Data Analytics and Cloud Computing
Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to oppor...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
United Kingdom
River Publishers
2021
Routledge |
| Vydání: | 1 |
| Edice: | River Publishers Series in Information Science and Technology |
| Témata: | |
| ISBN: | 9781000793550, 1000793559, 9788770221825, 8770221820 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Preface xv List of Contributors xxi List of Figures xxv List of Tables xxix List of Abbreviations xxxi 1 Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm 1 1.1 Introduction 2 1.2 Problem Description 3 1.2.1 Greedy Approach: Bicluster Size Maximization Based Fitness Function 4 1.2.2 Data Description 5 1.3 Proposed Work: COVID 19 Pattern Identification Using Greedy Biclustering 7 1.4 Results and Discussions 8 1.5 Conclusion 18 1.6 Acknowledgements 18 References 18 2 Artificial Fish Swarm Optimization Algorithm with Hill Climbing Based Clustering Technique for Throughput Maximization in Wireless Multimedia Sensor Network 23 2.1 Introduction 24 2.2 The Proposed AFSA-HC Technique 27 2.2.1 AFSA-HC Based Clustering Phase 28 2.2.2 Deflate-Based Data Aggregation Phase 33 2.2.3 Hybrid Data Transmission Phase 34 2.3 Performance Validation 34 2.4 Conclusion 40 References 40 3 Analysis of Machine Learning Techniques for Spam Detection 43 3.1 Introduction 44 3.1.1 Ham Messages 44 3.1.2 Spam Messages 44 3.2 Types of Spam Attack 45 3.2.1 Email Phishing 45 3.2.2 Spear Phishing 45 3.2.3 Whaling 46 3.3 Spammer Methods 46 3.4 Some Prevention Methods From User End 46 3.4.1 Protect Email Addresses 46 3.4.2 Preventing Spam from Being Sent 47 3.4.3 Block Spam to be Delivered 48 3.4.4 Identify and Separate Spam After Delivery 48 3.4.4.1 Targeted Link Analysis 48 3.4.4.2 Bayesian Filters 48 3.4.5 Report Spam 48 3.5 Machine Learning Algorithms 48 3.5.1 Naïve Bayes (NB) 48 3.5.2 Random Forests (RF) 49 3.5.3 Support Vector Machine (SVM) 49 3.5.4 Logistic Regression (LR) 50 3.6 Methodology 51 3.6.1 Database Used 51 3.6.2 Work Flow 51 3.7 Results and Analysis 52 3.7.1 Performance Metric 52 3.7.2 Experimental Results 52 3.7.2.1 Cleaning Data by Removing Punctuations, White Spaces, and Stop Words 54 3.7.2.2 Stemming the Messages 55 3.7.2.3 Analyzing the Common Words from the Spam and Ham Messages 55 3.7.3 Analyses of Machine Learning Algorithms 55 3.7.3.1 Accuracy Score Before Stemming 55 3.7.3.2 Accuracy Score After Stemming 55 3.7.3.3 Splitting Dataset into Train and Test Data 56 3.7.3.4 Mapping Confusion Matrix 58 3.7.3.5 Accuracy 58 3.8 Conclusion and Future Work 59 References 59 4 Smart Sensor Based Prognostication of Cardiac Disease Prediction Using Machine Learning Techniques 63 4.1 Introduction 64 4.2 Literature Survey 65 4.3 Proposed Method 67 4.4 Data Collection in IoT 67 4.4.1 Fetching Data from Sensors 68 4.4.2 K-Nearest Neighbor Classifier 69 4.4.3 Random Forest Classifier 70 4.4.4 Decision Tree Classifier 70 4.4.5 Extreme Gradient Boost Classifier 71 4.5 Results and Discussions 72 4.6 Conclusion 78 4.7 Acknowledgements 78 References 78 5 Assimilate Machine Learning Algorithms in Big Data Analytics: Review 81 5.1 Introduction 82 5.2 Literature Survey 86 5.3 Big Data 89 5.4 Machine Learning 92 5.5 File Categories 95 5.6 Storage And Expenses 95 5.7 The Device Learning Anatomy 96 5.8 Machine Learning Technology Methods in Big Data Analytics 97 5.9 Structure Mapreduce 97 5.10 Associated Investigations 98 5.11 Multivariate Data Coterie in Machine Learning 99 5.12 Machine Learning Algorithm 99 5.12.1 Machine Learning Framework 99 5.12.2 Parametric and Non-Parametric Techniques in Machine Learning 99 5.12.2.1 Bias 100 5.12.2.2 Variance 100 5.12.3 Parametric Techniques 101 5.12.3.1 Linear Regression 101 5.12.3.2 Decision Tree 101 5.12.3.3 Naive Bayes 102 5.12.3.4 Support Vector Machine 102 5.12.3.5 Random Forest 102 5.12.3.6 K-Nearest Neighbor 103 5.12.3.7 Deep Learning 104 5.12.3.8 Linear Vector Quantization (LVQ) 104 5.12.3.9 Transfer Learning 104 5.12.4 Non-Parametric Techniques 105 5.12.4.1 K-Means Clustering 105 5.12.4.2 Principal Component Analysis 105 5.12.4.3 A Priori Algorithm 105 5.12.4.4 Reinforcement Learning (RL) 105 5.12.4.5 Semi-Supervised Learning 106 5.13 Machine Learning Technology Assessment Parameters 106 5.13.1 Ranking Performance 106 5.13.2 Loss in Logarithmic Form 106 5.13.3 Assessment Measures 107 5.13.3.1 Accuracy 107 5.13.3.2 Precision/Specificity 107 5.13.3.3 Recall 107 5.13.3.4 F-Measure 108 5.13.4 Mean Definite Error (MAE) 108 5.13.5 Mean Quadruple Error (MSE) 108 5.14 Correlation of Outcomes of ML Algorithms 109 5.15 Applications 109 5.15.1 Economical Facilities 109 5.15.2 Business and Endorsement 110 5.15.3 Government Bodies 110 5.15.4 Hygiene 110 5.15.5 Transport 110 5.15.6 Fuel and Energy 111 5.15.7 Spoken Validation 111 5.15.8 Perception of the Device 111 5.15.9 Bio-Surveillance 111 5.15.10 Mechanization or Realigning 111 5.15.11 Mining Text 112 5.16 Conclusion 112 References 113 6 Resource Allocation Methodologies in Cloud Computing: A Review and Analysis 115 6.1 Introduction 116 6.1.1 Cloud Services Models 116 6.1.1.1 Infrastructure as a Service 117 6.1.1.2 Platform as a Service 118 6.1.1.3 Software as a Service 118 6.1.2 Types of Cloud Computing 118 6.1.2.1 Public Cloud 119 6.1.2.2 Private Cloud 119 6.1.2.3 Community Cloud 120 6.1.2.4 Hybrid Cloud 121 6.2 Resource Allocations in Cloud Computing 121 6.2.1 Static Allocation 122 6.2.2 Dynamic Allocation 122 6.3 Dynamic Resource Allocation Models in Cloud Computing 123 6.3.1 Service-Level Agreement Based Dynamic Resource Allocation Models 124 6.3.2 Market-Based Dynamic Resource Allocation Models 125 6.3.3 Utilization-Based Dynamic Resource Allocation Models 126 6.3.4 Task Scheduling in Cloud Computing 127 6.4 Research Challenges 130 6.5 Future Research Paths 131 6.6 Advantages and Disadvantages 131 6.7 Conclusion 135 References 135 7 Role of Machine Learning in Big Data 139 7.1 Introduction 140 7.2 Related Work 141 7.3 Tools in Big Data 142 7.3.1 Batch Analysis Big Data Tools 142 7.3.2 Stream Analysis Big Data Tools 143 7.3.3 Interactive Analysis Big Data Tools 144 7.4 Machine Learning Algorithms in Big Data 145 7.5 Applications of Machine Learning in Big Data 151 7.6 Challenges of Machine Learning in Big Data 154 7.6.1 Volume 154 7.6.2 Variety 156 7.6.3 Velocity 157 7.6.4 Veracity 159 7.7 Conclusion 160 References 161 8 Healthcare System for COVID-19: Challenges and Developments 165 8.1 Introduction 166 8.2 Related Work 167 8.3 IoT with Architecture 169 8.4 IoHT Security Requirements and Challenges 170 8.5 COVID-19 (Coronavirus Disease 2019) 172 8.6 The Potential of IoHT in COVID-19 Like Disease Control 173 8.7 The Current Applications of IoHT During COVID-19 175 8.7.1 Using IoHT to Dissect an Outbreak 175 8.7.2 Using IoHT to Ensure Compliance to Quarantine 176 8.7.3 Using IoHT to Manage Patient Care 176 8.8 IoHT Development for COVID-19 177 8.8.1 Smart Home 178 8.8.2 Smart Office 178 8.8.3 Smart Hotel 178 8.8.4 Smart Hospitals 178 8.9 Conclusion 179 References 179 9 An Integrated Approach of Blockchain & Big Data in Health Care Sector 183 9.1 Introduction 184 9.2 Blockchain for Health care 185 9.2.1 Healthcare data sharing through gem Network 186 9.2.2 OmniPHR 187 9.2.3 Medrec 188 9.2.4 PSN (Pervasive Social Network) System 189 9.2.5 Healthcare Data Gateway 190 9.2.6 Resources that are virtual 190 9.3 Overview of Blockchain & Big data in health care 191 9.3.1 Big Data in Healthcare 191 9.3.2 Blockchain in Health Care 192 9.3.3 Benefits of Blockchain in Healthcare 193 9.3.3.1 Master patient indices 193 9.3.3.2 Supply chain management 193 9.3.3.3 Claims adjudication 193 9.3.3.4 Interoperability 194 9.3.3.5 Single, longitudinal patient records 194 9.4 Application of Big Data for Blockchain 194 9.4.1 Smart Ecosystem 194 9.4.2 Digital Trust 195 9.4.3 Cybersecurity 195 9.4.4 Fighting Drugs 195 9.4.5 Online Accessing of Patient’s Data 196 9.4.6 Research as well as Development 196 9.4.7 Management of Data 196 9.4.8 Due to privacy storing of off-chain data 196 9.4.9 Collaboration of patient data 197 9.5 Solutions of Blockchain For Big Data in Health Care 197 9.6 Conclusion and Future Scope 198 References 199 10 Cloud Resource Management for Network Cameras 207 10.1 Introduction 207 10.2 Resource Analysis 210 10.2.1 Network Cameras 210 10.2.2 Resource Management on Cloud Environment 210 10.2.3 Image and Video Analysis 213 10.3 Cloud Resource Management Problems 214 10.4 Cloud Resource Manager 216 10.4.1 Evaluation of Performance 217 10.4.2 View of Resource Requirements 217 10.5 Bin Packing 218 10.5.1 Analysis of Dynamic Bin Packing 219 10.5.2 MinTotal DBP Problem 220 10.6 Resource Monitoring and Scaling 222 10.7 Conclusion 224 References 225 11 Software-Defined Networking for Healthcare Internet of Things 231 11.1 Introduction 231 11.2 Healthcare Internet of Things 233 11.2.1 Challenges in H-IoT 238 11.3 Software-Defined Networking 239 11.4 Opportunities, challenges, and possible solutions 243 11.5 Conclusion 245 References 246 12 Cloud Computing in the Public Sector: A Study 249 12.1 Introduction 250 12.2 History and Evolution of Cloud Computing 251 12.3 Application of Cloud Computing 252 12.4 Advantages of Cloud Computing 258 12.5 Challenges 263 12.6 Conclusion 269 13 Big Data Analytics: An overview 271 13.1 Introduction 271 13.2 Related Work 272 13.2.1 Big Data: What Is It? 275 13.2.1.1 Characteristics of Big Data 276 13.2.2 Big Data Analytics: What Is It? 277 13.3 Hadoop and Big Data 278 13.4 Big Data Analytics Framework 279 13.5 Big Data Analytics Techniques 280 13.5.1 Partitioning on Big Data 280 13.5.2 Sampling on Big Data 281 13.5.3 Sampling-Based Approximation 281 13.6 Big Social Data Analytics 281 13.7 Applications 282 13.7.1 Manufacturing Production 282 13.7.2 Smart Grid 283 13.7.3 Outbreak of Flu Prediction from Social Site 283 13.7.4 Sentiment Analysis of Twitter Data 283 13.8 Electricity Price Forecasting 284 13.9 Security Situational Analysis for Smart Grid 285 13.10 Future Scope 285 13.11 Challenges 285 13.12 Conclusion 286 References 286 14 Video Usefulness Detection in Big Surveillance Systems 289 14.1 Introduction 290 14.1.1 Challenges of Video Usefulness Detection 291 14.1.2 Video Usefulness Model 292 14.2 Background 292 14.2.1 (a) Quality of Video Services (QoS) 292 14.2.2 Edge Compu
- Title Page List of Figures List of Tables List of Abbreviations Preface Table of Contents 1. Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm 2. Artificial Fish Swarm Optimization Algorithm with Hill Climbing Based Clustering Technique for Throughput Maximization in Wireless Multimedia Sensor Network 3. Analysis of Machine Learning Techniques for Spam Detection 4. Smart Sensor Based Prognostication of Cardiac Disease Prediction Using Machine Learning Techniques 5. Assimilate Machine Learning Algorithms in Big Data Analytics: Review 6. Resource Allocation Methodologies in Cloud Computing: A Review and Analysis 7. Role of Machine Learning in Big Data 8. Healthcare System for COVID-19: Challenges and Developments 9. An Integrated Approach of Blockchain & Big Data in Health Care Sector 10. Cloud Resource Management for Network Cameras 11. Software-Defined Networking for Healthcare Internet of Things 12. Cloud Computing in the Public Sector: A Study 13. Big Data Analytics: An Overview 14. Video Usefulness Detection in Big Surveillance Systems Index About the Editors
- 3.7.2.1 Cleaning Data by Removing Punctuations, White Spaces, and Stop Words -- 3.7.2.2 Stemming the Messages -- 3.7.2.3 Analyzing the Common Words from the Spam and Ham Messages -- 3.7.3 Analyses of Machine Learning Algorithms -- 3.7.3.1 Accuracy Score Before Stemming -- 3.7.3.2 Accuracy Score After Stemming -- 3.7.3.3 Splitting Dataset into Train and Test Data -- 3.7.3.4 Mapping Confusion Matrix -- 3.7.3.5 Accuracy -- 3.8 Conclusion and Future Work -- References -- 4: Smart Sensor Based Prognostication of Cardiac Disease Prediction Using Machine Learning Techniques -- 4.1 Introduction -- 4.2 Literature Survey -- 4.3 Proposed Method -- 4.4 Data Collection in IoT -- 4.4.1 Fetching Data from Sensors -- 4.4.2 K-Nearest Neighbor Classifier -- 4.4.3 Random Forest Classifier -- 4.4.4 Decision Tree Classifier -- 4.4.5 Extreme Gradient Boost Classifier -- 4.5 Results and Discussions -- 4.6 Conclusion -- 4.7 Acknowledgements -- References -- 5: Assimilate Machine Learning Algorithms in Big Data Analytics: Review -- 5.1 Introduction -- 5.2 Literature Survey -- 5.3 Big Data -- 5.4 Machine Learning -- 5.5 File Categories -- 5.6 Storage And Expenses -- 5.7 The Device Learning Anatomy -- 5.8 Machine Learning Technology Methods in Big Data Analytics -- 5.9 Structure Mapreduce -- 5.10 Associated Investigations -- 5.11 Multivariate Data Coterie in Machine Learning -- 5.12 Machine Learning Algorithm -- 5.12.1 Machine Learning Framework -- 5.12.2 Parametric and Non-Parametric Techniques in Machine Learning -- 5.12.2.1 Bias -- 5.12.2.2 Variance -- 5.12.3 Parametric Techniques -- 5.12.3.1 Linear Regression -- 5.12.3.2 Decision Tree -- 5.12.3.3 Naive Bayes -- 5.12.3.4 Support Vector Machine -- 5.12.3.5 Random Forest -- 5.12.3.6 K-Nearest Neighbor -- 5.12.3.7 Deep Learning -- 5.12.3.8 Linear Vector Quantization (LVQ) -- 5.12.3.9 Transfer Learning
- 7: Role of Machine Learning in Big Data -- 7.1 Introduction -- 7.2 Related Work -- 7.3 Tools in Big Data -- 7.3.1 Batch Analysis Big Data Tools -- 7.3.2 Stream Analysis Big Data Tools -- 7.3.3 Interactive Analysis Big Data Tools -- 7.4 Machine Learning Algorithms in Big Data -- 7.5 Applications of Machine Learning in Big Data -- 7.6 Challenges of Machine Learning in Big Data -- 7.6.1 Volume -- 7.6.2 Variety -- 7.6.3 Velocity -- 7.6.4 Veracity -- 7.7 Conclusion -- References -- 8: Healthcare System for COVID-19: Challenges and Developments -- 8.1 Introduction -- 8.2 Related Work -- 8.3 IoT with Architecture -- 8.4 IoHT Security Requirements and Challenges -- 8.5 COVID-19 (Coronavirus Disease 2019) -- 8.6 The Potential of IoHT in COVID-19 Like Disease Control -- 8.7 The Current Applications of IoHT During COVID-19 -- 8.7.1 Using IoHT to Dissect an Outbreak -- 8.7.2 Using IoHT to Ensure Compliance to Quarantine -- 8.7.3 Using IoHT to Manage Patient Care -- 8.8 IoHT Development for COVID-19 -- 8.8.1 Smart Home -- 8.8.2 Smart Office -- 8.8.3 Smart Hotel -- 8.8.4 Smart Hospitals -- 8.9 Conclusion -- References -- 9: An Integrated Approach of Blockchain & -- Big Data in Health Care Sector -- 9.1 Introduction -- 9.2 Blockchain for Health care -- 9.2.1 Healthcare Data Sharing through Gem Network -- 9.2.2 OmniPHR -- 9.2.3 Medrec -- 9.2.4 PSN (Pervasive Social Network) System -- 9.2.5 Healthcare Data Gateway -- 9.2.6 Resources that are Virtual -- 9.3 Overview of Blockchain & -- Big Data in Health Care -- 9.3.1 Big Data in Healthcare -- 9.3.2 Blockchain in Health Care -- 9.3.3 Benefits of Blockchain in Healthcare -- 9.3.3.1 Master Patient Indices -- 9.3.3.2 Supply Chain Management -- 9.3.3.3 Claims Adjudication -- 9.3.3.4 Interoperability -- 9.3.3.5 Single, Longitudinal Patient Records -- 9.4 Application of Big Data for Blockchain -- 9.4.1 Smart Ecosystem
- 9.4.2 Digital Trust -- 9.4.3 Cybersecurity -- 9.4.4 Fighting Drugs -- 9.4.5 Online Accessing of Patient's Data -- 9.4.6 Research as well as Development -- 9.4.7 Management of Data -- 9.4.8 Due to Privacy Storing of Off-Chain Data -- 9.4.9 Collaboration of Patient Data -- 9.5 Solutions of Blockchain For Big Data in Health Care -- 9.6 Conclusion and Future Scope -- References -- 10: Cloud Resource Management for Network Cameras -- 10.1 Introduction -- 10.2 Resource Analysis -- 10.2.1 Network Cameras -- 10.2.2 Resource Management on Cloud Environment -- 10.2.3 Image and Video Analysis -- 10.3 Cloud Resource Management Problems -- 10.4 Cloud Resource Manager -- 10.4.1 Evaluation of Performance -- 10.4.2 View of Resource Requirements -- 10.5 Bin Packing -- 10.5.1 Analysis of Dynamic Bin Packing -- 10.5.2 MinTotal DBP Problem -- 10.6 Resource Monitoring and Scaling -- 10.7 Conclusion -- References -- 11: Software-Defined Networking for Healthcare Internet of Things -- 11.1 Introduction -- 11.2 Healthcare Internet of Things -- 11.2.1 Challenges in H-IoT -- 11.3 Software-Defined Networking -- 11.4 Opportunities, Challenges, and Possible Solutions -- 11.5 Conclusion -- References -- 12: Cloud Computing in the Public Sector: A Study -- 12.1 Introduction -- 12.2 History and Evolution of Cloud Computing -- 12.3 Application of Cloud Computing -- 12.4 Advantages of Cloud Computing -- 12.5 Challenges -- 12.6 Conclusion -- 13: Big Data Analytics: An overview -- 13.1 Introduction -- 13.2 Related Work -- 13.2.1 Big Data: What Is It? -- 13.2.1.1 Characteristics of Big Data -- 13.2.2 Big Data Analytics: What Is It? -- 13.3 Hadoop and Big Data -- 13.4 Big Data Analytics Framework -- 13.5 Big Data Analytics Techniques -- 13.5.1 Partitioning on Big Data -- 13.5.2 Sampling on Big Data -- 13.5.3 Sampling-Based Approximation -- 13.6 Big Social Data Analytics
- 5.12.4 Non-Parametric Techniques -- 5.12.4.1 K-Means Clustering -- 5.12.4.2 Principal Component Analysis -- 5.12.4.3 A Priori Algorithm -- 5.12.4.4 Reinforcement Learning (RL) -- 5.12.4.5 Semi-Supervised Learning -- 5.13 Machine Learning Technology Assessment Parameters -- 5.13.1 Ranking Performance -- 5.13.2 Loss in Logarithmic Form -- 5.13.3 Assessment Measures -- 5.13.3.1 Accuracy -- 5.13.3.2 Precision/Specificity -- 5.13.3.3 Recall -- 5.13.3.4 F-Measure -- 5.13.4 Mean Definite Error (MAE) -- 5.13.5 Mean Quadruple Error (MSE) -- 5.14 Correlation of Outcomes of ML Algorithms -- 5.15 Applications -- 5.15.1 Economical Facilities -- 5.15.2 Business and Endorsement -- 5.15.3 Government Bodies -- 5.15.4 Hygiene -- 5.15.5 Transport -- 5.15.6 Fuel and Energy -- 5.15.7 Spoken Validation -- 5.15.8 Perception of the Device -- 5.15.9 Bio-Surveillance -- 5.15.10 Mechanization or Realigning -- 5.15.11 Mining Text -- 5.16 Conclusion -- References -- 6: Resource Allocation Methodologies in Cloud Computing: A Review and Analysis -- 6.1 Introduction -- 6.1.1 Cloud Services Models -- 6.1.1.1 Infrastructure as a Service -- 6.1.1.2 Platform as a Service -- 6.1.1.3 Software as a Service -- 6.1.2 Types of Cloud Computing -- 6.1.2.1 Public Cloud -- 6.1.2.2 Private Cloud -- 6.1.2.3 Community Cloud -- 6.1.2.4 Hybrid Cloud -- 6.2 Resource Allocations in Cloud Computing -- 6.2.1 Static Allocation -- 6.2.2 Dynamic Allocation -- 6.3 Dynamic Resource Allocation Models in Cloud Computing -- 6.3.1 Service-Level Agreement Based Dynamic Resource Allocation Models -- 6.3.2 Market-Based Dynamic Resource Allocation Models -- 6.3.3 Utilization-Based Dynamic Resource Allocation Models -- 6.3.4 Task Scheduling in Cloud Computing -- 6.4 Research Challenges -- 6.5 Future Research Paths -- 6.6 Advantages and Disadvantages -- 6.7 Conclusion -- References
- Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- 1: Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm -- 1.1 Introduction -- 1.2 Problem Description -- 1.2.1 Greedy Approach: Bicluster Size Maximization Based Fitness Function -- 1.2.2 Data Description -- 1.3 Proposed Work: COVID 19 Pattern Identification Using Greedy Biclustering -- 1.4 Results and Discussions -- 1.5 Conclusion -- 1.6 Acknowledgements -- References -- 2: Artificial Fish Swarm Optimization Algorithm with Hill Climbing Based Clustering Technique for Throughput Maximization in Wireless Multimedia Sensor Network -- 2.1 Introduction -- 2.2 The Proposed AFSA-HC Technique -- 2.2.1 AFSA-HC Based Clustering Phase -- 2.2.2 Deflate-Based Data Aggregation Phase -- 2.2.3 Hybrid Data Transmission Phase -- 2.3 Performance Validation -- 2.4 Conclusion -- References -- 3: Analysis of Machine Learning Techniques for Spam Detection -- 3.1 Introduction -- 3.1.1 Ham Messages -- 3.1.2 Spam Messages -- 3.2 Types of Spam Attack -- 3.2.1 Email Phishing -- 3.2.2 Spear Phishing -- 3.2.3 Whaling -- 3.3 Spammer Methods -- 3.4 Some Prevention Methods From User End -- 3.4.1 Protect Email Addresses -- 3.4.2 Preventing Spam from Being Sent -- 3.4.3 Block Spam to be Delivered -- 3.4.4 Identify and Separate Spam After Delivery -- 3.4.4.1 Targeted Link Analysis -- 3.4.4.2 Bayesian Filters -- 3.4.5 Report Spam -- 3.5 Machine Learning Algorithms -- 3.5.1 Naïve Bayes (NB) -- 3.5.2 Random Forests (RF) -- 3.5.3 Support Vector Machine (SVM) -- 3.5.4 Logistic Regression (LR) -- 3.6 Methodology -- 3.6.1 Database Used -- 3.6.2 Work Flow -- 3.7 Results and Analysis -- 3.7.1 Performance Metric -- 3.7.2 Experimental Results
- 13.7 Applications

