Batch Updates of Distributed Streaming Graphs using Linear Algebra

We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute g...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 645 - 649
Hlavní autori: Hassani, Elaheh, Hussain, Md Taufique, Azad, Ariful
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 17.11.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute graph updates. By reducing unnecessary communication among processes and employing shared-memory parallelism, we accelerate updates of distributed graphs. Additionally, we maintain a balanced load in the output matrix by permuting the resultant matrix during the update process. We demonstrate that our streaming update algorithm is at least 25 times faster than alternative linear-algebraic methods and scales linearly up to 4,096 cores (32 nodes) on a Cray EX supercomputer.
AbstractList We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute graph updates. By reducing unnecessary communication among processes and employing shared-memory parallelism, we accelerate updates of distributed graphs. Additionally, we maintain a balanced load in the output matrix by permuting the resultant matrix during the update process. We demonstrate that our streaming update algorithm is at least 25 times faster than alternative linear-algebraic methods and scales linearly up to 4,096 cores (32 nodes) on a Cray EX supercomputer.
Author Azad, Ariful
Hassani, Elaheh
Hussain, Md Taufique
Author_xml – sequence: 1
  givenname: Elaheh
  surname: Hassani
  fullname: Hassani, Elaheh
  email: ehassani@iu.edu
  organization: Indiana University,Dept. of Intelligent Systems Engineering,Bloomington,IN,USA
– sequence: 2
  givenname: Md Taufique
  surname: Hussain
  fullname: Hussain, Md Taufique
  email: mth@iu.edu
  organization: Indiana University,Dept. of Intelligent Systems Engineering,Bloomington,IN,USA
– sequence: 3
  givenname: Ariful
  surname: Azad
  fullname: Azad, Ariful
  email: azad@iu.edu
  organization: Indiana University,Dept. of Intelligent Systems Engineering,Bloomington,IN,USA
BookMark eNotj7FOwzAURY0EElDyBTD4Bxqe7TzHHttCC1IkhlIxVrbz0lpq08hOB_6eIpiuznJ07j277k89MfYooBQC7PN68aWVrKCUIKsSAIy9YoWtrVEIChErdcuKnKMHDWgqMHjH5nM3hj3fDK0bKfNTx19iHlP055Favh4TuWPsd3yV3LDP_Jx_oYk9ucRnhx355B7YTecOmYr_nbDN8vVz8TZtPlbvi1kzdRL1OO1qoYx3wjvjbYsSQ5Da--AvIR1ZjUqLUAVBWlor69AhhY4EtIBatgbVhD39eSMRbYcUjy59bwUYeflj1Q-r1ktc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCW63240.2024.00089
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350355543
EndPage 649
ExternalDocumentID 10820609
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-a256t-f7138ba1ba8b9d525cc26bbcb408fe965361c4c1e629927cf5ecfe10d0562d853
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001451792300068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:01:54 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a256t-f7138ba1ba8b9d525cc26bbcb408fe965361c4c1e629927cf5ecfe10d0562d853
PageCount 5
ParticipantIDs ieee_primary_10820609
PublicationCentury 2000
PublicationDate 2024-Nov.-17
PublicationDateYYYYMMDD 2024-11-17
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis
PublicationTitleAbbrev SC-W
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584085
Score 1.8901601
Snippet We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or...
SourceID ieee
SourceType Publisher
StartPage 645
SubjectTerms batch graph updates
Conferences
Data structures
distributed-memory algorithms
High performance computing
Linear algebra
Parallel algorithms
parallel computing
parallel graph algorithms
scalability in graph processing
Sparse matrices
streaming graphs
Supercomputers
Title Batch Updates of Distributed Streaming Graphs using Linear Algebra
URI https://ieeexplore.ieee.org/document/10820609
WOSCitedRecordID wos001451792300068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgYmACRBDf8sAasJ3GTkZaKAyoqgSFbpU_ngsSpFU_-P28l7bAwsAWRZEiO07uXZ7vjrELL20mLdIS0NqnTeN0akUzImsNAesJFbI6JeL5wXS7xWBQ9lZi9VoLAwD15jO4pMO6lx_GfkG_yvANJ7dxkuttGmOWYq314qH2Hrl1rZyFpCivHtsvZEYukAUq8sgWlOX-K0OlhpDOzj9vvsuSHzEe733DzB7bgGqftVr4CX3l_QkR9hkfR35DDrgUXgWBU6vZfuDV_I78qGecdrePOPJOXNf8-n1E3eKE9Tu3T-37dBWHkFqsS-ZpRD5ZOCudLVwZcpV7r7Rz3uGwI5Q6z7T0TS9BI8Qo42MOPoIUgWqcgLB8wBrVuIJDxoMI4AsTY0R0tplD2iWCVsYaF3MVzBFLaAKGk6XjxXA99uM_zp-wbZpj0uhJc8oa8-kCztiW_5y_zabn9XP6AtAtk_U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELRQQYITIIp44wPXgO0kdnKkhVJEqSrRQm-VnwUJ0qoPvp_dtAUuHLhFUaTIjpPZyXpmCLmwXMdcAy3xUtooUUZGmiUBWKtzUE8IF5cpEc8t1W5n_X7eWYrVSy2M977cfOYv8bDs5buRneOvMnjD0W0c5XrraZIIvpBrrZYPNvjQr2vpLcRZfvVUf0E7cgY8UKBLNsM0918pKiWINLb_efsdUv2R49HON9DskjVf7JFaDT6ir7Q3Rso-paNAb9ADF-OrvKPYbNYfcDW9Q0fqKcX97UMKzBNWNr1-H2K_uEp6jdtuvRktAxEiDZXJLArAKDOjudGZyV0qUmuFNMYaGHbwuUxjyW1iuZcAMkLZkHobPGcOqxwHwLxPKsWo8AeEOua8zVQIAfBZxwaIF3NSKK1MSIVTh6SKEzAYLzwvBquxH_1x_pxsNruPrUHrvv1wTLZwvlGxx9UJqcwmc39KNuzn7G06OSuf2Rez65c8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24-W%3A+Workshops+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=Batch+Updates+of+Distributed+Streaming+Graphs+using+Linear+Algebra&rft.au=Hassani%2C+Elaheh&rft.au=Hussain%2C+Md+Taufique&rft.au=Azad%2C+Ariful&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=645&rft.epage=649&rft_id=info:doi/10.1109%2FSCW63240.2024.00089&rft.externalDocID=10820609