LIDC: A Location Independent Multi-Cluster Computing Framework for Data Intensive Science

Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use logically centralized controllers such as Kubernetes (K8s) to match tasks to available resources. However, this centralized approach is unsuitable...

Full description

Saved in:
Bibliographic Details
Published in:SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis pp. 760 - 764
Main Authors: Timilsina, Sankalpa, Shannigrahi, Susmit
Format: Conference Proceeding
Language:English
Published: IEEE 17.11.2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use logically centralized controllers such as Kubernetes (K8s) to match tasks to available resources. However, this centralized approach is unsuitable in multi-organizational collaborations. Furthermore, workflows often need to use manual configurations tailored for a single platform and cannot adapt to dynamic changes across infrastructure.Our work introduces a decentralized control plane for placing computations on geographically dispersed compute clusters using semantic names. We assign semantic names to computations to match requests with named Kubernetes (K8s) service endpoints. We show that this approach provides multiple benefits. First, it allows placement of computational jobs to be independent of location, enabling any cluster with sufficient resources to execute the computation. Second, it facilitates dynamic compute placement without requiring prior knowledge of cluster locations or predefined configurations.
DOI:10.1109/SCW63240.2024.00108