LIDC: A Location Independent Multi-Cluster Computing Framework for Data Intensive Science
Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use logically centralized controllers such as Kubernetes (K8s) to match tasks to available resources. However, this centralized approach is unsuitable...
Saved in:
| Published in: | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis pp. 760 - 764 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
17.11.2024
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use logically centralized controllers such as Kubernetes (K8s) to match tasks to available resources. However, this centralized approach is unsuitable in multi-organizational collaborations. Furthermore, workflows often need to use manual configurations tailored for a single platform and cannot adapt to dynamic changes across infrastructure.Our work introduces a decentralized control plane for placing computations on geographically dispersed compute clusters using semantic names. We assign semantic names to computations to match requests with named Kubernetes (K8s) service endpoints. We show that this approach provides multiple benefits. First, it allows placement of computational jobs to be independent of location, enabling any cluster with sufficient resources to execute the computation. Second, it facilitates dynamic compute placement without requiring prior knowledge of cluster locations or predefined configurations. |
|---|---|
| AbstractList | Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use logically centralized controllers such as Kubernetes (K8s) to match tasks to available resources. However, this centralized approach is unsuitable in multi-organizational collaborations. Furthermore, workflows often need to use manual configurations tailored for a single platform and cannot adapt to dynamic changes across infrastructure.Our work introduces a decentralized control plane for placing computations on geographically dispersed compute clusters using semantic names. We assign semantic names to computations to match requests with named Kubernetes (K8s) service endpoints. We show that this approach provides multiple benefits. First, it allows placement of computational jobs to be independent of location, enabling any cluster with sufficient resources to execute the computation. Second, it facilitates dynamic compute placement without requiring prior knowledge of cluster locations or predefined configurations. |
| Author | Shannigrahi, Susmit Timilsina, Sankalpa |
| Author_xml | – sequence: 1 givenname: Sankalpa surname: Timilsina fullname: Timilsina, Sankalpa email: stimilsin43@tntech.edu organization: Tennessee Tech,Computer Science Department,Cookeville,TN – sequence: 2 givenname: Susmit surname: Shannigrahi fullname: Shannigrahi, Susmit email: sshannigrahi@tntech.edu organization: Tennessee Tech,Computer Science Department,Cookeville,TN |
| BookMark | eNotj81KxDAURiMoqOM8gS7yAq03v03dDR1HByouRhFXQ9LcSrCTDm2q-PYWdPOd1TnwXZLT2Eck5JpBzhiUt7vqTQsuIefAZQ7AwJyQZVmURigQSikpzslyHIMDDcpIMOqCvNfbdXVHV7TuG5tCH-k2ejziPDHRp6lLIau6aUw40Ko_HKcU4gfdDPaA3_3wSdt-oGub7KwljGP4QrprAsYGr8hZa7sRl_9ckNfN_Uv1mNXPD9tqVWeWK50y1IYL6z2U3hhfugIKcL7R6JEJ1Wp0rdaFbFrvJXMg0MmWC6MRC-a1dWJBbv66ARH3xyEc7PCzn89zUNqIX5toVBY |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SCW63240.2024.00108 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350355543 |
| EndPage | 764 |
| ExternalDocumentID | 10820568 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
| ID | FETCH-LOGICAL-a256t-e6823add09d88d9b7070bdc6ede135f6ebf6674cfdd41b03eb4f2386ee71d6ab3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001451792300085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:59:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a256t-e6823add09d88d9b7070bdc6ede135f6ebf6674cfdd41b03eb4f2386ee71d6ab3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10820568 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-17 |
| PublicationDateYYYYMMDD | 2024-11-17 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis |
| PublicationTitleAbbrev | SC-W |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584085 |
| Score | 1.8972452 |
| Snippet | Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 760 |
| SubjectTerms | Collaboration Complexity theory Conferences data intensive science Decentralized control Distributed computing High performance computing Manuals orchestration systems Semantics |
| Title | LIDC: A Location Independent Multi-Cluster Computing Framework for Data Intensive Science |
| URI | https://ieeexplore.ieee.org/document/10820568 |
| WOSCitedRecordID | wos001451792300085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1s8eBJxYrf5OA1uh_ZJOtNthYLpRRUrKeSbCYgSCvt1t_vZHdbvXjwtgQ2C5PMvnzMew_g2gSNFFVaHjmZcWE88lx6yitHE0g64TNszCbUeKyn03zSktVrLgwi1sVneBMe67t8tyjX4aiMMpzwKpO6Ax2lZEPW2kyecL0X1LpaZaE4ym-fitcgRh7RLjAJGtlx8JD85aFSQ8hg_58fP4DeDxmPTbYwcwg7OD-Ct9GwX9yxezZaNGdubLj1s61Yzarlxcc6qCCwxriB3mWDTSUWo6Uq65vKsG0JO2uzvAcvg4fn4pG3Lgnc0HKl4ih1ktJfKsqd1i63ipLYulKiwzjNvETrpVSi9M6J2EYpWuEJpyWiip00Nj2G7nwxxxNgidEG0WqrMhQ6px4J36jJJRqNEfIUeiEus89GCGO2CcnZH-3nsBdCH6h7sbqAbrVc4yXsll_V-2p5VQ_fN-gYnRQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFPSk4sTf5uA12h9pknqTzrFhHQMnztNImhcYyCaz8-83abvpxYO3EEgLyXv90uR93wdwrbxGiig0DQxPKFMWacqtyyvjAogbZhOszSbEYCDH43TYkNUrLgwiVsVneOOb1V2-mRdLf1TmMtzhVcLlJmx566yGrrUKH3_B5_W6Gm2hMEhvn7NXL0ceuP_AyKtkh95F8peLSgUi3b1_vn4f2j90PDJcA80BbODsEN7yfie7I_ckn9enbqS_drQtScWrpdn70usgkNq6wY0l3VUtFnGbVdJRpSLrInbS5HkbXroPo6xHG58EqtyGpaTIZRS771SQGilNqoVLY20KjgbDOLEcteVcsMIaw0IdxKiZdUjNEUVouNLxEbRm8xkeA4mUVIhaapEgk6l7okM412UiiUoxfgJtPy-Tj1oKY7KaktM_-q9gpzd6yid5f_B4Brt-GTyRLxTn0CoXS7yA7eKrnH4uLqul_AZGD6Bd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24-W%3A+Workshops+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=LIDC%3A+A+Location+Independent+Multi-Cluster+Computing+Framework+for+Data+Intensive+Science&rft.au=Timilsina%2C+Sankalpa&rft.au=Shannigrahi%2C+Susmit&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=760&rft.epage=764&rft_id=info:doi/10.1109%2FSCW63240.2024.00108&rft.externalDocID=10820568 |