NEO-DNND: Communication-Optimized Distributed Nearest Neighbor Graph Construction
Graph-based approximate nearest neighbor algorithms have shown high neighbor structure representation quality. NN-Descent is a widely known graph-based approximate nearest neighbor (ANN) algorithm. However, graph-based approaches are memory- and time-consuming.To address the drawbacks, we develop a...
Uložené v:
| Vydané v: | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 688 - 696 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
17.11.2024
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Graph-based approximate nearest neighbor algorithms have shown high neighbor structure representation quality. NN-Descent is a widely known graph-based approximate nearest neighbor (ANN) algorithm. However, graph-based approaches are memory- and time-consuming.To address the drawbacks, we develop a scalable distributed NN-Descent. Our NEO-DNND (neighbor-checking efficiency optimized distributed NN-Descent) is built on top of MPI and designed to utilize network bandwidth efficiently. NEO-DNND reduces duplicate elements, increases intra-node data sharing, and leverages available DRAM to replicate data that may be sent frequently.NEO-DNND showed remarkable scalability up to 256 nodes and was able to construct neighborhood graphs from billion-scale datasets. Compared to a leading shared-memory ANN library, NEO-DNND achieved competitive performance even on a single node and exhibited 41.7X better performance by scaling up to 32 nodes. Furthermore, NEO-DNND outperformed a state-of-the-art distributed NN-Descent implementation, achieving up to a 6.0X speedup. |
|---|---|
| AbstractList | Graph-based approximate nearest neighbor algorithms have shown high neighbor structure representation quality. NN-Descent is a widely known graph-based approximate nearest neighbor (ANN) algorithm. However, graph-based approaches are memory- and time-consuming.To address the drawbacks, we develop a scalable distributed NN-Descent. Our NEO-DNND (neighbor-checking efficiency optimized distributed NN-Descent) is built on top of MPI and designed to utilize network bandwidth efficiently. NEO-DNND reduces duplicate elements, increases intra-node data sharing, and leverages available DRAM to replicate data that may be sent frequently.NEO-DNND showed remarkable scalability up to 256 nodes and was able to construct neighborhood graphs from billion-scale datasets. Compared to a leading shared-memory ANN library, NEO-DNND achieved competitive performance even on a single node and exhibited 41.7X better performance by scaling up to 32 nodes. Furthermore, NEO-DNND outperformed a state-of-the-art distributed NN-Descent implementation, achieving up to a 6.0X speedup. |
| Author | Iwabuchi, Keita Sanders, Geoffrey Pearce, Roger Steil, Trevor Priest, Benjamin W. |
| Author_xml | – sequence: 1 givenname: Keita surname: Iwabuchi fullname: Iwabuchi, Keita email: kiwabuchi@llnl.gov organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing – sequence: 2 givenname: Trevor surname: Steil fullname: Steil, Trevor email: steil1@llnl.gov organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing – sequence: 3 givenname: Benjamin W. surname: Priest fullname: Priest, Benjamin W. email: priest2@llnl.gov organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing – sequence: 4 givenname: Roger surname: Pearce fullname: Pearce, Roger email: rpearce@llnl.gov organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing – sequence: 5 givenname: Geoffrey surname: Sanders fullname: Sanders, Geoffrey email: sanders29@llnl.gov organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing |
| BookMark | eNotj8tKxEAURFtQUMd8gS7yA4m3n-l2J8k4CkOCqLgcOp0bp8E86CQL_XojuqpanFNQl-S0H3ok5JpCSimY25f8XXEmIGXARAoARp2QyGRGcwlcSin4OYmmydegQGoBWl6Q53JbJUVZFndxPnTd0ntnZz_0STXOvvPf2MSFn-bg62Vee4k24DSv6T-O9RDiXbDjcVX7lVncr3lFzlr7OWH0nxvy9rB9zR-TfbV7yu_3iWVSzYkRGdZUIwoQSjuL3GmKDA3PHG8kR2VZy1kjVcZbqgDq1jTO1UpCpnA9tCE3f7seEQ9j8J0NXwcKmq0A5z_TLFCm |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SCW63240.2024.00096 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350355543 |
| EndPage | 696 |
| ExternalDocumentID | 10820763 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: U.S. Department of Energy funderid: 10.13039/100000015 |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
| ID | FETCH-LOGICAL-a256t-947eb18ee40468cae3c81e2e937c3d53e6a2f32d5673f1600bf9dccb65076e503 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001451792300074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:59:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a256t-947eb18ee40468cae3c81e2e937c3d53e6a2f32d5673f1600bf9dccb65076e503 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_10820763 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-17 |
| PublicationDateYYYYMMDD | 2024-11-17 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis |
| PublicationTitleAbbrev | SC-W |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584085 |
| Score | 1.8897113 |
| Snippet | Graph-based approximate nearest neighbor algorithms have shown high neighbor structure representation quality. NN-Descent is a widely known graph-based... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 688 |
| SubjectTerms | approximate nearest neighbor Approximation algorithms Artificial neural networks Conferences distributed computing Focusing High performance computing Libraries Optimization Random access memory Scalability Vectors |
| Title | NEO-DNND: Communication-Optimized Distributed Nearest Neighbor Graph Construction |
| URI | https://ieeexplore.ieee.org/document/10820763 |
| WOSCitedRecordID | wos001451792300074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIZPtGJgAkQQ38rAakjiJI5ZmxamtAgQ3arEvkgdaBENHfj13LkJFQMDU6wskc-x7872-xzAdRUzglDyjZrMiNiqWmhlQ8HocoM6wgRjV2xCFUU2nepJK1Z3WhhEdJfP8Iab7izfLs0nb5XRDCd_RROiBz2l1Eas1f08fLzHtK6WLBQG-vZp8Mow8oCywIgZ2YEj829rqDgXMtr_58cPwNuK8fzJj5s5hB1cHMFjMRyLvCjyO_-XxEOMaQl4m3-h9XNG4nI1K2oXTKpdNfSkXJxG3b9nTrXP1To7fqwHL6Ph8-BBtNURRElhSiN0rGidzRDJ2mTnEqXJQoyQ4g0jbSIxLaNaRjZJlaxDimuqWltjKgrJVIpJII-hv1gu8AT8KKhRUu6QxaaMtak5B5O2qnRoy8wk5Sl4bI_Z-waAMetMcfbH-3PYY5OzZC9UF9CnnuAl7Jp1M199XLlh-wYUMJji |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIYtKEgwAaKIbzKwGuLYqWPWflBEcYsooluV2BepAy2ihYFfz53bUjEwMMXKEvkc--5sv88xdlkoQhBKulGTOa68LrnRXnBClzswCaSgQrEJbW02GJjeQqwetDAAEC6fwRU1w1m-n7gP2irDGY7-CifEOttIlUrEXK61_H3ogI94XQu2kIjN9VP9hXDkMeaBCVGy48DmX1VRCU6ktfPPz--y6kqOF_V-HM0eW4PxPnu0zS5vWNu4iX6JPHgXF4HX0Rf4qEFQXKpnhW1LrNrpDJ-YjeO4R7dEqo6oXueSIFtlz61mv97mi_oIPMdAZcaN0rjSZgBob7R0DtJlAhLAiMNJn0qo5UkpE5_WtCwFRjZFabxzBQZlugZpLA9YZTwZwyGLkrgEidlDplyujCspC5O-KIzweebS_IhVyR7DtzkCY7g0xfEf7y_YVrv_0Bl27uz9Cdsm85OAT-hTVsFewRnbdJ-z0fT9PAzhNzgZnCk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24-W%3A+Workshops+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=NEO-DNND%3A+Communication-Optimized+Distributed+Nearest+Neighbor+Graph+Construction&rft.au=Iwabuchi%2C+Keita&rft.au=Steil%2C+Trevor&rft.au=Priest%2C+Benjamin+W.&rft.au=Pearce%2C+Roger&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=688&rft.epage=696&rft_id=info:doi/10.1109%2FSCW63240.2024.00096&rft.externalDocID=10820763 |