High-Performance Eigensolver Combining EigenExa and Iterative Refinement
This study proposes a high-performance and reliable eigensolver via mixed-precision arithmetic between ordinary and highly-accurate precisions. Eigenvalue decomposition is ubiquitous in simulations. Various eigensolvers for computing approximations have been developed thus far. If eigenvalues are na...
Uloženo v:
| Vydáno v: | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1703 - 1712 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This study proposes a high-performance and reliable eigensolver via mixed-precision arithmetic between ordinary and highly-accurate precisions. Eigenvalue decomposition is ubiquitous in simulations. Various eigensolvers for computing approximations have been developed thus far. If eigenvalues are narrowly clustered, the computation of eigenvectors may be ill-posed. Thus, the computed eigenpairs may not be sufficiently accurate and lack reliability. In this study, we introduce mixed-precision iterative refinement methods to improve the accuracy of eigenvectors obtained using numerical methods. This approach contributes to obtaining sufficiently accurate results without arbitrary precision eigensolvers. We construct a high-performance and reliable eigensolver by combining the iterative refinement methods and EigenExa, a modern high-performance solver for large-scale and highly parallel computations. Numerical experiment results demonstrate the accuracy of the results and performance benchmark of the proposed approach. |
|---|---|
| DOI: | 10.1109/SCW63240.2024.00213 |