High-Performance Eigensolver Combining EigenExa and Iterative Refinement
This study proposes a high-performance and reliable eigensolver via mixed-precision arithmetic between ordinary and highly-accurate precisions. Eigenvalue decomposition is ubiquitous in simulations. Various eigensolvers for computing approximations have been developed thus far. If eigenvalues are na...
Uloženo v:
| Vydáno v: | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1703 - 1712 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study proposes a high-performance and reliable eigensolver via mixed-precision arithmetic between ordinary and highly-accurate precisions. Eigenvalue decomposition is ubiquitous in simulations. Various eigensolvers for computing approximations have been developed thus far. If eigenvalues are narrowly clustered, the computation of eigenvectors may be ill-posed. Thus, the computed eigenpairs may not be sufficiently accurate and lack reliability. In this study, we introduce mixed-precision iterative refinement methods to improve the accuracy of eigenvectors obtained using numerical methods. This approach contributes to obtaining sufficiently accurate results without arbitrary precision eigensolvers. We construct a high-performance and reliable eigensolver by combining the iterative refinement methods and EigenExa, a modern high-performance solver for large-scale and highly parallel computations. Numerical experiment results demonstrate the accuracy of the results and performance benchmark of the proposed approach. |
|---|---|
| AbstractList | This study proposes a high-performance and reliable eigensolver via mixed-precision arithmetic between ordinary and highly-accurate precisions. Eigenvalue decomposition is ubiquitous in simulations. Various eigensolvers for computing approximations have been developed thus far. If eigenvalues are narrowly clustered, the computation of eigenvectors may be ill-posed. Thus, the computed eigenpairs may not be sufficiently accurate and lack reliability. In this study, we introduce mixed-precision iterative refinement methods to improve the accuracy of eigenvectors obtained using numerical methods. This approach contributes to obtaining sufficiently accurate results without arbitrary precision eigensolvers. We construct a high-performance and reliable eigensolver by combining the iterative refinement methods and EigenExa, a modern high-performance solver for large-scale and highly parallel computations. Numerical experiment results demonstrate the accuracy of the results and performance benchmark of the proposed approach. |
| Author | Uchino, Yuki Imamura, Toshiyuki |
| Author_xml | – sequence: 1 givenname: Yuki surname: Uchino fullname: Uchino, Yuki email: yuki.uchino.fe@riken.jp organization: RIKEN Center for Computational Science,Kobe, Hyogo,Japan – sequence: 2 givenname: Toshiyuki surname: Imamura fullname: Imamura, Toshiyuki email: imamura.toshiyuki@riken.jp organization: RIKEN Center for Computational Science,Kobe, Hyogo,Japan |
| BookMark | eNotjstKxDAYRiMoqGOfQBd9gdY_92QppdqBAcULLoek86cGpqmkZdC3d2BcnY-z-DjX5DxNCQm5pVBTCvb-rflUnAmoGTBRAzDKz0hhtTVcApdSCn5JinmOHhRII8DIK9J1cfiqXjCHKY8u9Vi2ccA0T_sD5rKZRh9TTMPJtj-udGlXrhfMbokHLF8xxIQjpuWGXAS3n7H454p8PLbvTVdtnp_WzcOmckyqpRI-oDc9tb0V_jg0AHf6GCx66p0P3ip_rPU7ikoAMgfYW5RSB4taaOArcnf6jYi4_c5xdPl3S8EwUIbzPwyLThg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SCW63240.2024.00213 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350355543 |
| EndPage | 1712 |
| ExternalDocumentID | 10820683 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
| ID | FETCH-LOGICAL-a256t-4bfeb8c19c94bb8c7003a70244c1babfb96b503bd1e640e2a0ec9e557f9e74703 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001451792300174&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:59:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a256t-4bfeb8c19c94bb8c7003a70244c1babfb96b503bd1e640e2a0ec9e557f9e74703 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10820683 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-17 |
| PublicationDateYYYYMMDD | 2024-11-17 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis |
| PublicationTitleAbbrev | SC-W |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584085 |
| Score | 1.8894913 |
| Snippet | This study proposes a high-performance and reliable eigensolver via mixed-precision arithmetic between ordinary and highly-accurate precisions. Eigenvalue... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1703 |
| SubjectTerms | Accuracy accurate numerical computation Approximation algorithms Conferences eigenvalue decomposition Eigenvalues and eigenfunctions Error analysis High performance computing Iterative algorithms iterative refinement Reliability Scalability Supercomputers |
| Title | High-Performance Eigensolver Combining EigenExa and Iterative Refinement |
| URI | https://ieeexplore.ieee.org/document/10820683 |
| WOSCitedRecordID | wos001451792300174&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ29T0MhEMCJbRyc1FjjdxhcUd57UB5z06Ympmn87NbwcSQur6a2xj_fO9paFwc3wkI47uCAu98xdl3UgVztJMoKQKhklKg1BFFah-YlQxEzrunl3oxG9WRix-tk9ZwLAwA5-AxuqJn_8uMsLOmpDC2caON11WItY7qrZK2N8tD3HtG61mShQtrbx94rwcgl3gJLYmSXVMPgVw2VfIQM9v85-AHrbJPx-PjnmDlkO9AcsSHFZ4jxNuqf9wmriYqEqsnRyH0u_LDq7X857prI7zJBGbc3_gAJvUsasMOeB_2n3lCsiyIIh97JQiifwNehsMEqjw2DknYGJ6hC4Z1P3na9lpWPBXSVhNJJCBa0NskCXh1kdczazayBE8a1VMHhmkRC2KcYndLWG6NDdOgZgDxlHRLD9H3FvZhuJHD2R_852yNJU6ZeYS5YezFfwiXbDZ-Lt4_5VV6tb95TllA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LTwIxEIAbRRM9qRHj2z14rXZ3W7o9EwhEJERRuZE-ZhMvC0Ew_nxnCogXD96aXppOZ9ppO_MNY7dp4cnVLnmWA3BZaskLBZ5nxqJ5CZ-GiGt67el-vxiNzGCVrB5zYQAgBp_BHTXjX36Y-AU9laGFE228yLfZjpIyE8t0rbX60Acf8bpWbKFUmPvn5hvhyAXeAzOiZGdUxeBXFZV4iLQP_jn8Iatv0vGSwc9Bc8S2oDpmHYrQ4INN3H_SIrAmqhIqZ4Jm7mLph2Vv68smtgpJNzKUcYNLnqBE_5IGrLOXdmvY7PBVWQRu0T-Zc-lKcIVPjTfSYUOjrK3GCUqfOutKZxpOidyFFBpSQGYFeANK6dIAXh5EfsJq1aSCU5YoIb3FVQkEsS9DsFIZp7XywaJvAOKM1UkM4-mSfDFeS-D8j_4bttcZPvbGvW7_4YLtk9Qpby_Vl6w2ny3giu36z_n7x-w6rtw34EeZlw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24-W%3A+Workshops+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=High-Performance+Eigensolver+Combining+EigenExa+and+Iterative+Refinement&rft.au=Uchino%2C+Yuki&rft.au=Imamura%2C+Toshiyuki&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=1703&rft.epage=1712&rft_id=info:doi/10.1109%2FSCW63240.2024.00213&rft.externalDocID=10820683 |