AI-Assisted Design-Space Analysis of High-Performance Arm Processors
This work quantifies the impact of microarchitectural features in modern high-performance Arm CPUs. To combat a parameter space that is too large to traverse naively, we employ a decision tree regression machine learning model to predict the number of execution cycles with 93.38% accuracy compared t...
Uloženo v:
| Vydáno v: | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1455 - 1467 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This work quantifies the impact of microarchitectural features in modern high-performance Arm CPUs. To combat a parameter space that is too large to traverse naively, we employ a decision tree regression machine learning model to predict the number of execution cycles with 93.38% accuracy compared to the simulated cycles. We build on previous work by specializing our design to real-world HPC workloads and modernize our approach with updated search spaces, improved simulation frameworks, and over 180,000 simulated data points. We find empirically that vector length typically has the largest impact on HPC code performance at 25.91% of our performance weighting, followed by memory performance across all levels of the memory hierarchy, and the size of the reorder buffer and register files. Our results motivate deeper exploration of these parameters in both hardware design and simulation, as well as advancing the modelling of architectural simulation through the use of machine learning. |
|---|---|
| AbstractList | This work quantifies the impact of microarchitectural features in modern high-performance Arm CPUs. To combat a parameter space that is too large to traverse naively, we employ a decision tree regression machine learning model to predict the number of execution cycles with 93.38% accuracy compared to the simulated cycles. We build on previous work by specializing our design to real-world HPC workloads and modernize our approach with updated search spaces, improved simulation frameworks, and over 180,000 simulated data points. We find empirically that vector length typically has the largest impact on HPC code performance at 25.91% of our performance weighting, followed by memory performance across all levels of the memory hierarchy, and the size of the reorder buffer and register files. Our results motivate deeper exploration of these parameters in both hardware design and simulation, as well as advancing the modelling of architectural simulation through the use of machine learning. |
| Author | McIntosh-Smith, Simon Moore, Joseph Deakin, Tom |
| Author_xml | – sequence: 1 givenname: Joseph surname: Moore fullname: Moore, Joseph email: zi23956@bristol.ac.uk organization: University of Bristol,Bristol,United Kingdom – sequence: 2 givenname: Tom surname: Deakin fullname: Deakin, Tom email: tom.deakin@bristol.ac.uk organization: University of Bristol,Bristol,United Kingdom – sequence: 3 givenname: Simon surname: McIntosh-Smith fullname: McIntosh-Smith, Simon email: s.mcintosh-smith@bristol.ac.uk organization: University of Bristol,Bristol,United Kingdom |
| BookMark | eNotjN1KwzAYQCMoqLNPoBd9gdQv-Zq_y9KpGwwcTPFypPHLLKztSHazt3firg6cA-eeXY_TSIw9CqiEAPe8ab80yhoqCbKuAITVV6xwxllUgEqpGm9ZkXPfgQZla7Dqjs2bJW_OLh_pu5xT7ncj3xx8oLIZ_f50DuUUy0W_--FrSnFKgx__YhrKdZoC5Tyl_MBuot9nKi6csc_Xl492wVfvb8u2WXEvlT5y1DpQRK9lpEABOhQQXVRGo1fKWuOtCyi8CsZYSy5Gpx0aYTtEE5TDGXv6__ZEtD2kfvDptBVgJRhp8Bf3sEs0 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SCW63240.2024.00186 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350355543 |
| EndPage | 1467 |
| ExternalDocumentID | 10820727 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
| ID | FETCH-LOGICAL-a256t-366cef3a62fecec0b310f9f5763a55887a89c31a5c7788e9ff9693718b337c593 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001451792300151&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:59:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a256t-366cef3a62fecec0b310f9f5763a55887a89c31a5c7788e9ff9693718b337c593 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10820727 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-17 |
| PublicationDateYYYYMMDD | 2024-11-17 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis |
| PublicationTitleAbbrev | SC-W |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584085 |
| Score | 1.8893807 |
| Snippet | This work quantifies the impact of microarchitectural features in modern high-performance Arm CPUs. To combat a parameter space that is too large to traverse... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1455 |
| SubjectTerms | aarch64 Adaptation models Codes Computational modeling Data models Machine learning Performance gain Predictive models Random access memory Registers simeng simulation SST vectorization Vectors |
| Title | AI-Assisted Design-Space Analysis of High-Performance Arm Processors |
| URI | https://ieeexplore.ieee.org/document/10820727 |
| WOSCitedRecordID | wos001451792300151&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RioEJEEV8ywOrIYkTOx5RSwUSqioVRLfKcc4SS4P6we_nzk0pCwNblCXKPSd3z773DuBWE-1xVFZInuwic1M7WWqvpbdVTfVBjVmIJq4vZjQqp1M7bsXqUQuDiLH5DO_4Mp7l141f81YZfeGUryjhdqBjjN6ItbaLh4_32K2rdRZKE3s_6b-zGXlCLDBjj-yUBdO_ZqjEFDI8_OfDj6C3E-OJ8U-aOYY9nJ_A4OFZUmQZo1oMYheGnBD9RbF1GRFNENzEIcc7aYAgWEUrDWgWyx68DR9f-0-yHYggHVUmK6m09hiU01lAjz6pqDYLNhBlUK4o6HfhSutV6gpviNmiDcFq9rsrK6WML6w6he68meMZiEAQYZ5XeYkmt1RjGYKm8sHmjhhaqc6hxyGYfW48L2bbt7_44_4lHHCUWaWXmivorhZrvIZ9_7X6WC5uIlLfEUmTCw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQYIJEEV844HV0NSJE4-opWpFqSq1iG6V45wllqbqB7-fO5NSFga2KEuUe07unn3vHcC9JtpjqayQPNlFxmlhZaadls7kBdUHBTZ9MHHtp4NBNpmYYSVWD1oYRAzNZ_jAl-EsvyjdmrfK6AunfEUJdxf2eHRWJdfaLB8-4GO_rspbKGqYx1Hrne3IG8QDm-ySHbFk-tcUlZBEOkf_fPwx1LdyPDH8STQnsIOzU2g_9STFllEqRDv0YcgREWAUG58RUXrBbRxyuBUHCAJWVOKAcrGsw1vnedzqymokgrRUm6yk0tqhV1Y3PTp0jZyqM288kQZlk4R-GDYzTkU2cSlxWzTeG82Od1muVOoSo86gNitneA7CE0gYx3mcYRobqrJSAid33sSWOFqmLqDOIZjOv10vppu3v_zj_h0cdMev_Wm_N3i5gkOOOGv2ovQaaqvFGm9g332uPpaL24DaF-4vllQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24-W%3A+Workshops+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=AI-Assisted+Design-Space+Analysis+of+High-Performance+Arm+Processors&rft.au=Moore%2C+Joseph&rft.au=Deakin%2C+Tom&rft.au=McIntosh-Smith%2C+Simon&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=1455&rft.epage=1467&rft_id=info:doi/10.1109%2FSCW63240.2024.00186&rft.externalDocID=10820727 |