Leveraging Hybrid Classical-Quantum Methods for Efficient Load Rebalancing in HPC

Load imbalance is a challenge for parallel applications in High Performance Computing (HPC). It is caused by processes having different execution times or load values, leading to idle or wait times at synchronization points, where faster processes must wait for the slowest process to catch up. To mi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1713 - 1722
Hlavní autori: Zawalska, Justyna, Chung, Minh, Rycerz, Katarzyna, Schulz, Laura, Schulz, Martin, Kranzlmuller, Dieter
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 17.11.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Load imbalance is a challenge for parallel applications in High Performance Computing (HPC). It is caused by processes having different execution times or load values, leading to idle or wait times at synchronization points, where faster processes must wait for the slowest process to catch up. To mitigate this issue, applications can employ load balancing (LB) strategies, which migrate load between processes to even out load. This is often referred to as the Load Rebalancing Problem (LRP). While many approaches solving the LRP exist, they can only be heuristics and hence further optimization potential exists. In our work, we turn to a novel approach by using hybrid classical-quantum approaches and present two versions of the constrained quadratic model for solving the LRP; the two differ in how they balance the number of qubits required with the types of applied constraints. We compare the quantum-based methods with classical methods using heuristic algorithms Greedy, Karmarkar-Karp, and ProactLB. We evaluate our approaches using imbalance ratio and speedup as metrics, as well as the number of migrated tasks to indicate overhead caused by migrations. Our results show that the quantum-based methods outperform the classic methods. For example, we need only 1/4 of the number of migrated tasks in a realistic use case compared with classical methods, particularly Greedy and KK, to balance the load.
AbstractList Load imbalance is a challenge for parallel applications in High Performance Computing (HPC). It is caused by processes having different execution times or load values, leading to idle or wait times at synchronization points, where faster processes must wait for the slowest process to catch up. To mitigate this issue, applications can employ load balancing (LB) strategies, which migrate load between processes to even out load. This is often referred to as the Load Rebalancing Problem (LRP). While many approaches solving the LRP exist, they can only be heuristics and hence further optimization potential exists. In our work, we turn to a novel approach by using hybrid classical-quantum approaches and present two versions of the constrained quadratic model for solving the LRP; the two differ in how they balance the number of qubits required with the types of applied constraints. We compare the quantum-based methods with classical methods using heuristic algorithms Greedy, Karmarkar-Karp, and ProactLB. We evaluate our approaches using imbalance ratio and speedup as metrics, as well as the number of migrated tasks to indicate overhead caused by migrations. Our results show that the quantum-based methods outperform the classic methods. For example, we need only 1/4 of the number of migrated tasks in a realistic use case compared with classical methods, particularly Greedy and KK, to balance the load.
Author Schulz, Martin
Chung, Minh
Zawalska, Justyna
Kranzlmuller, Dieter
Rycerz, Katarzyna
Schulz, Laura
Author_xml – sequence: 1
  givenname: Justyna
  surname: Zawalska
  fullname: Zawalska, Justyna
  email: jzawalska@agh.edu.pl
  organization: AGH University of Krakow,Institute of Computer Science,Krakow,Poland
– sequence: 2
  givenname: Minh
  surname: Chung
  fullname: Chung, Minh
  email: minh.chung@lrz.de
  organization: Leibniz Supercomputing Centre (LRZ),Garching bei München,Germany
– sequence: 3
  givenname: Katarzyna
  surname: Rycerz
  fullname: Rycerz, Katarzyna
  email: kzajac@agh.edu.pl
  organization: AGH University of Krakow,Institute of Computer Science,Krakow,Poland
– sequence: 4
  givenname: Laura
  surname: Schulz
  fullname: Schulz, Laura
  email: laura.schulz@lrz.de
  organization: Leibniz Supercomputing Centre (LRZ),Garching bei München,Germany
– sequence: 5
  givenname: Martin
  surname: Schulz
  fullname: Schulz, Martin
  email: martin.schulz@lrz.de
  organization: Leibniz Supercomputing Centre (LRZ),Garching bei München,Germany
– sequence: 6
  givenname: Dieter
  surname: Kranzlmuller
  fullname: Kranzlmuller, Dieter
  email: dieter.kranzlmueller@lrz.de
  organization: Leibniz Supercomputing Centre (LRZ),Garching bei München,Germany
BookMark eNotjMtKxDAUQCMoqGO_QBf5gdabd7KUMjpCRccHLoebNhkDnVTajjB_r6KrsznnnJPjPORAyCWDijFw1y_1uxZcQsWBywqAM3lECmecFQqEUkqKU1JMU_KgQVkJVp2RdRO-wojblLd0dfBj6mjd44_UYl-u95jn_Y4-hPlj6CYah5EuY0xtCnmmzYAdfQ4ee8ztb58yXT3VF-QkYj-F4p8L8na7fK1XZfN4d1_fNCVypeeSuWCt51445WL0znqIxkbreGdlQGaUaUMbW-U1cxJNRA0IRhjHrfaRiwW5-vumEMLmc0w7HA8bBpaDFkx8A79NUDY
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCW63240.2024.00214
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350355543
EndPage 1722
ExternalDocumentID 10820631
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-a256t-19e88b2b3959ffb98b0f78f892d84ea1757cecfc5b6194a7fa60a07379286bf23
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001451792300175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:59:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a256t-19e88b2b3959ffb98b0f78f892d84ea1757cecfc5b6194a7fa60a07379286bf23
PageCount 10
ParticipantIDs ieee_primary_10820631
PublicationCentury 2000
PublicationDate 2024-Nov.-17
PublicationDateYYYYMMDD 2024-11-17
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis
PublicationTitleAbbrev SC-W
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584085
Score 1.889593
Snippet Load imbalance is a challenge for parallel applications in High Performance Computing (HPC). It is caused by processes having different execution times or load...
SourceID ieee
SourceType Publisher
StartPage 1713
SubjectTerms CQM
Heuristic algorithms
High performance computing
HPC
HPCQC integration
Load management
Load modeling
Load Rebalancing
Measurement
NP-hard problem
Optimization
Quantum Computing
Qubit
Synchronization
task migration
Upper bound
Title Leveraging Hybrid Classical-Quantum Methods for Efficient Load Rebalancing in HPC
URI https://ieeexplore.ieee.org/document/10820631
WOSCitedRecordID wos001451792300175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgYmACRBHf8sBqSJw0tueoVYdStQJEt8p2nqUOpKhtkPj3vOemwMLAFkWKLF2e9c4fd8fYXQrIqbXXwmMzEblVuUAWbgQkmbTYUUJVuBg2ocZjPZuZSStWj1oYAIiXz-CeHuNZfrX0DW2V4Qwnt3FSTe8rVWzFWrvioeM9cutqnYXSxDw8la9kRp7gKlCSR7Ykqc6vDJXYQgZH_xz8mHV_xHh88t1mTtge1KdsOgKswZgwxIefpLriMd6SIBfTBuFq3vhjTIdec-SlvB-tInAEPlraiiOqdKfR0_eLmg8nZZe9DPrP5VC06QjCIk3ZiNSA1k66zPRMCM5olwSlgzay0jlYpAXKgw--52ijwqpgi8TihFZG6sIFmZ2xTr2s4ZzxHkCaK6RCWZbnJslcoZ3XWGO-MGBDuGBdwmP-vjXAmO-guPzj_RU7JMhJspeqa9bZrBq4YQf-Y7NYr27jb_sCuOaYWA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxFAxSBT2pWPHbHLxG96ub5FxaKm5LixV7K0n2BXpwK21X8N_7XtqqFw_eloUlMPvCm3zMDGN3MSCnVk4Jh81EZEZmAlm4FhClicGO4svchrAJORioyUQPN2L1oIUBgHD5DO7pMZzll3NX01YZznByGyfV9C5FZ-m1XGtbPnTAR35dG2-hONIPz-1XsiOPcB2YkEt2QmKdXykqoYl0D_85_BFr_sjx-PC70RyzHahO2KgArMKQMcR7n6S74iHgkkAXoxoBq994P-RDLzkyU94JZhE4Ai_mpuSIK91qdPT9rOK9YbvJXrqdcbsnNvkIwiBRWYlYg1I2saluae-tVjbyUnmlk1JlYJAYSAfOu5alrQojvckjg1Na6kTl1ifpKWtU8wrOGG8BxJlEMpSmWaaj1ObKOoVV5nINxvtz1iQ8pu9rC4zpFoqLP97fsv3euF9Mi8fB0yU7IPhJwBfLK9ZYLWq4ZnvuYzVbLm7CL_wC5I6bpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24-W%3A+Workshops+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=Leveraging+Hybrid+Classical-Quantum+Methods+for+Efficient+Load+Rebalancing+in+HPC&rft.au=Zawalska%2C+Justyna&rft.au=Chung%2C+Minh&rft.au=Rycerz%2C+Katarzyna&rft.au=Schulz%2C+Laura&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=1713&rft.epage=1722&rft_id=info:doi/10.1109%2FSCW63240.2024.00214&rft.externalDocID=10820631