Matrix-Free Finite Volume Kernels on a Dataflow Architecture

Fast and accurate numerical simulations are crucial for designing large-scale geological carbon storage projects ensuring safe long-term CO 2 containment as a climate change mitigation strategy. These simulations involve solving numerous large and complex linear systems arising from the implicit Fin...

Full description

Saved in:
Bibliographic Details
Published in:SC24: International Conference for High Performance Computing, Networking, Storage and Analysis pp. 1 - 11
Main Authors: Sai, Ryuichi, Hamon, Francois P., Mellor-Crummey, John, Araya-Polo, Mauricio
Format: Conference Proceeding
Language:English
Published: IEEE 17.11.2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fast and accurate numerical simulations are crucial for designing large-scale geological carbon storage projects ensuring safe long-term CO 2 containment as a climate change mitigation strategy. These simulations involve solving numerous large and complex linear systems arising from the implicit Finite Volume (FV) discretization of PDEs governing subsurface fluid flow. Compounded with highly detailed geomodels, solving linear systems is computationally and memory expensive, and accounts for the majority of the simulation time. Modern memory hierarchies are insufficient to meet the latency and bandwidth needs of large-scale numerical simulations. Therefore, exploring algorithms that can leverage alternative and balanced paradigms such as dataflow and in-memory computing is crucial. This work introduces a matrix-free algorithm to solve FV-based linear systems using a dataflow architecture to significantly minimize memory latency and bandwidth bottlenecks. Our implementation achieves two orders of magnitude speedup compared to a GPGPU-based reference implementation, and up to 1.2 PFlops on a single dataflow device.
AbstractList Fast and accurate numerical simulations are crucial for designing large-scale geological carbon storage projects ensuring safe long-term CO 2 containment as a climate change mitigation strategy. These simulations involve solving numerous large and complex linear systems arising from the implicit Finite Volume (FV) discretization of PDEs governing subsurface fluid flow. Compounded with highly detailed geomodels, solving linear systems is computationally and memory expensive, and accounts for the majority of the simulation time. Modern memory hierarchies are insufficient to meet the latency and bandwidth needs of large-scale numerical simulations. Therefore, exploring algorithms that can leverage alternative and balanced paradigms such as dataflow and in-memory computing is crucial. This work introduces a matrix-free algorithm to solve FV-based linear systems using a dataflow architecture to significantly minimize memory latency and bandwidth bottlenecks. Our implementation achieves two orders of magnitude speedup compared to a GPGPU-based reference implementation, and up to 1.2 PFlops on a single dataflow device.
Author Sai, Ryuichi
Mellor-Crummey, John
Hamon, Francois P.
Araya-Polo, Mauricio
Author_xml – sequence: 1
  givenname: Ryuichi
  surname: Sai
  fullname: Sai, Ryuichi
  email: ryuichi@alumni.rice.edu
  organization: Rice University,Houston,TX,USA
– sequence: 2
  givenname: Francois P.
  surname: Hamon
  fullname: Hamon, Francois P.
  email: francois.hamon@totalenergies.com
  organization: TotalEnergies EP Research & Technology US, LLC.,Houston,TX,USA
– sequence: 3
  givenname: John
  surname: Mellor-Crummey
  fullname: Mellor-Crummey, John
  email: johnmc@rice.edu
  organization: Rice University,Houston,TX,USA
– sequence: 4
  givenname: Mauricio
  surname: Araya-Polo
  fullname: Araya-Polo, Mauricio
  email: mauricio.araya@totalenergies.com
  organization: TotalEnergies EP Research & Technology US, LLC.,Houston,TX,USA
BookMark eNotzMtKxDAUgOEICurYFxAXeYHWk5xcGnAzVKvDjLjwsh1ic4qBTitpBvXtR9DVv_n4z9nxOI3E2KWASghw18-NEgpMJUGqCgBQHbHCWVejBtTSCXvKinmO76CtRYuAZ-zm0ecUv8s2EfE2jjETf5uG_Y74mtJIw8ynkXt-67Pvh-mLL1P38Yu6vE90wU56P8xU_HfBXtu7l-ah3Dzdr5rlpvRSq1z2pibqQh2kVR5N0AaNlFRLB51DB85BMKa3ShNBDZKMN4J0r0TQHSHhgl39fSMRbT9T3Pn0sxVgHQo0eADvzUgG
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SC41406.2024.00034
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350352917
EndPage 11
ExternalDocumentID 10793136
Genre orig-research
GrantInformation_xml – fundername: Total
  funderid: 10.13039/501100007185
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a254t-f68eecd8d274a36d563622e8290c9390990d66f745ee0802e6a61e5f41d5ce3e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414891300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 01 06:01:57 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a254t-f68eecd8d274a36d563622e8290c9390990d66f745ee0802e6a61e5f41d5ce3e3
PageCount 11
ParticipantIDs ieee_primary_10793136
PublicationCentury 2000
PublicationDate 2024-Nov.-17
PublicationDateYYYYMMDD 2024-11-17
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle SC24: International Conference for High Performance Computing, Networking, Storage and Analysis
PublicationTitleAbbrev SC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib057737303
Score 1.8969764
Snippet Fast and accurate numerical simulations are crucial for designing large-scale geological carbon storage projects ensuring safe long-term CO 2 containment as a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bandwidth
Climate change
Computational modeling
dataflow architecture
distributed memory
energy
finite-volume
high-performance computing
In-memory computing
Linear systems
matrix-free linear solver
Numerical models
Numerical simulation
Prevention and mitigation
Solid modeling
wafer-scale engine
Title Matrix-Free Finite Volume Kernels on a Dataflow Architecture
URI https://ieeexplore.ieee.org/document/10793136
WOSCitedRecordID wos001414891300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCDe8sBqSOpXLLGgQoQEVJV4qFvl2GepS4JCC_x8fGkDXRjYLC-ns8_-fL777gg55wIGBsqUxbe0YxFvBStL6ZkwolTSZy4si7g-6NEon0zMeEVWb7kwANAmn8EFDttYvq_dAr_K4gmP1pRx1SM9rdWSrNUZj9SaR2vlHTEmNZdPwyg6xTyEAZbITrE58loLlRZBiu1_yt4hyS8Xj45_UGaXbEC1R64esbL-FysaAFrM8N1IX9t7ht5DU0W8o3VFLb2x2J23_qTXa_GChLwUt8_DO7bqg8BsdN_mLKgcwPncRw_ScuWliqgzAAyBOsMNhra8UkELCYDUWVBWZSCDyLx0wIHvk35VV3BAqAjG-6Bd7qNnp73NQXNrA4i4JyIX_pAkqPr0bVnqYtppffTH_DHZwtVFcl6mT0h_3izglGy6j_nsvTlrN-gb_xORPA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMEEiCLeeGA1JPErllhQISrqQ5UoqFvl2GepS4JCCvx87LSFLgxslpfT2Wd_Pt99dwhdUwaJgjwi_i1tiMdbRvKcW8IUywW3sXGLIq59ORymk4kaLcnqDRcGAJrkM7gJwyaWb0szD19l_oR7a4qp2ERbnLEkWtC1VubDpaTeXumKGhOp2-eOFx6FTIQkFMmOQnvktSYqDYZke_-Uvo_av2w8PPrBmQO0AcUhuhuE2vpfJKsAcDYLL0f82tw0uAdV4REPlwXW-EGH_rzlJ75fixi00Uv2OO50ybITAtHegauJEymAsan1PqSmwnLhcSeBEAQ1iqoQ3LJCOMk4QCDPgtAiBu5YbLkBCvQItYqygGOEmVPWOmlS6307aXUKkmrtgPldYSmzJ6gdVJ--LYpdTFdan_4xf4V2uuNBf9p_GvbO0G5Y6UDVi-U5atXVHC7QtvmoZ-_VZbNZ37_mlIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24%3A+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=Matrix-Free+Finite+Volume+Kernels+on+a+Dataflow+Architecture&rft.au=Sai%2C+Ryuichi&rft.au=Hamon%2C+Francois+P.&rft.au=Mellor-Crummey%2C+John&rft.au=Araya-Polo%2C+Mauricio&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FSC41406.2024.00034&rft.externalDocID=10793136