Stellaris: Staleness-Aware Distributed Reinforcement Learning with Serverless Computing
Deep reinforcement learning (DRL) has achieved remarkable success in diverse areas, including gaming AI, scientific simulations, and large-scale (HPC) system scheduling. DRL training, which involves a trial-and-error process, demands considerable time and computational resources. To overcome this ch...
Uloženo v:
| Vydáno v: | SC24: International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 17 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!