Realizing Joint Extreme-Scale Simulations on Multiple Supercomputers-Two Superfacility Case Studies
High-dimensional grid-based simulations serve as both a tool and a challenge in researching various domains. The main challenge of these approaches is the well-known curse of dimensionality, amplified by the need for fine resolutions in high-fidelity applications. The combination technique (CT) prov...
Uloženo v:
| Vydáno v: | SC24: International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 17 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | High-dimensional grid-based simulations serve as both a tool and a challenge in researching various domains. The main challenge of these approaches is the well-known curse of dimensionality, amplified by the need for fine resolutions in high-fidelity applications. The combination technique (CT) provides a straightforward way of performing such simulations while alleviating the curse of dimensionality. Recent work demonstrated the potential of the CT to join multiple systems simultaneously to perform a single high-dimensional simulation. This paper shows how to extend this to three or more systems and addresses some remaining challenges: load balancing on heterogeneous hardware; utilizing compression to maximize the communication bandwidth; efficient I/O management through hardware mapping; and improving memory utilization through algorithmic optimizations. Combining these contributions, we demonstrate the feasibility of the CT for extreme-scale Superfacility scenarios of 46 trillion DOF on two systems and 35 trillion DOF on three systems. Scenarios at these resolutions would be intractable with full-grid solvers (\gt1,000 nonillion DOF each). |
|---|---|
| DOI: | 10.1109/SC41406.2024.00104 |