Scaling Molecular Dynamics with ab initio Accuracy to 149 Nanoseconds per Day
Physical phenomena such as chemical reactions, bond breaking, and phase transition require molecular dynamics (MD) simulation with ab initio accuracy ranging from milliseconds to microseconds. However, previous state-of-the-art neural network based MD packages such as DeePMD-kit can only reach 4.7 n...
Uloženo v:
| Vydáno v: | SC24: International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 15 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Physical phenomena such as chemical reactions, bond breaking, and phase transition require molecular dynamics (MD) simulation with ab initio accuracy ranging from milliseconds to microseconds. However, previous state-of-the-art neural network based MD packages such as DeePMD-kit can only reach 4.7 nanoseconds per day on the Fugaku supercomputer. In this paper, we present a novel node-based parallelization scheme to reduce communication by 81%, then optimize the computationally intensive kernels with sve-gemm and mixed precision. Finally, we implement intra-node load balance to further improve the scalability. Numerical results on the Fugaku supercomputer show that our work has significantly improved the time-to-solution of the DeePMD-kit by a factor of 31.7 x, reaching 149 nanoseconds per day on 12,000 computing nodes. This work has opened the door for millisecond simulation with ab initio accuracy within one week for the first time. |
|---|---|
| AbstractList | Physical phenomena such as chemical reactions, bond breaking, and phase transition require molecular dynamics (MD) simulation with ab initio accuracy ranging from milliseconds to microseconds. However, previous state-of-the-art neural network based MD packages such as DeePMD-kit can only reach 4.7 nanoseconds per day on the Fugaku supercomputer. In this paper, we present a novel node-based parallelization scheme to reduce communication by 81%, then optimize the computationally intensive kernels with sve-gemm and mixed precision. Finally, we implement intra-node load balance to further improve the scalability. Numerical results on the Fugaku supercomputer show that our work has significantly improved the time-to-solution of the DeePMD-kit by a factor of 31.7 x, reaching 149 nanoseconds per day on 12,000 computing nodes. This work has opened the door for millisecond simulation with ab initio accuracy within one week for the first time. |
| Author | Li, Boyang Yuan, Guojun Li, Mingzhen Li, Enji Jia, Weile Li, Jianxiong Guo, Zhuoqiang Wang, Zhan Liu, Lijun Tan, Guangming |
| Author_xml | – sequence: 1 givenname: Jianxiong surname: Li fullname: Li, Jianxiong email: lijianxiong20g@ict.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 2 givenname: Boyang surname: Li fullname: Li, Boyang email: liboyang22s@ict.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 3 givenname: Zhuoqiang surname: Guo fullname: Guo, Zhuoqiang email: guozhuoqiang20z@ict.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 4 givenname: Mingzhen surname: Li fullname: Li, Mingzhen email: limingzhen@ict.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 5 givenname: Enji surname: Li fullname: Li, Enji email: lienji23s@ict.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 6 givenname: Lijun surname: Liu fullname: Liu, Lijun email: liu@mech.eng.osaka-u.ac.jp organization: Osaka University,Graduate School of Engineering,Department of Mechanical Engineering – sequence: 7 givenname: Guojun surname: Yuan fullname: Yuan, Guojun email: yuanguojun@ncic.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 8 givenname: Zhan surname: Wang fullname: Wang, Zhan email: wangzhan@ncic.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 9 givenname: Guangming surname: Tan fullname: Tan, Guangming email: tgm@ict.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors – sequence: 10 givenname: Weile surname: Jia fullname: Jia, Weile email: jiaweile@ict.ac.cn organization: Institute of Computing Technology,Chinese Academy of Sciences,State Key Lab of Processors |
| BookMark | eNotj8tOwzAQRY0EElD6A4iFfyBlJnYy8bIqT6mFRWFdjd0JWEqdKkmF8vdEgtVdnaNzr9V5apModYuwQAR3v11ZtFAucsjtAgBMeabmjlxlCjBF7pAu1bzvo4eCyJABc6U228BNTF960zYSTg13-mFMfIih1z9x-NbsdUxxiK1ehnDqOIx6aDVap984tb2ENu17fZSJ4_FGXdTc9DL_35n6fHr8WL1k6_fn19VynXFe2CEr0Qs5qcgTeM4DAaHdF6GUqhZf09QrBq1HCCXXzgBUzrEBNBXmBYmZqbs_bxSR3bGLB-7GHQI5g9OtX4jtTVU |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SC41406.2024.00036 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350352917 |
| EndPage | 15 |
| ExternalDocumentID | 10793130 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Postdoctoral Program for Innovative Talents funderid: 10.13039/501100012152 – fundername: RIKEN funderid: 10.13039/501100006264 – fundername: Chinese Academy of Sciences funderid: 10.13039/501100002367 – fundername: National Key Research and Development Program of China funderid: 10.13039/501100012166 – fundername: National Science Foundation funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a254t-61be79e87b70ba2c70714d5c6e8febf7350e314b10c6af9300899a301381257e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414891300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jan 01 06:01:57 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a254t-61be79e87b70ba2c70714d5c6e8febf7350e314b10c6af9300899a301381257e3 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10793130 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-17 |
| PublicationDateYYYYMMDD | 2024-11-17 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | SC24: International Conference for High Performance Computing, Networking, Storage and Analysis |
| PublicationTitleAbbrev | SC |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib057737303 |
| Score | 1.9123789 |
| Snippet | Physical phenomena such as chemical reactions, bond breaking, and phase transition require molecular dynamics (MD) simulation with ab initio accuracy ranging... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Computational efficiency Computational Science DeePMD-kit Distance measurement High performance computing Kernel LAMMPS Molecular Dynamics Neural networks Optimization Scalability Supercomputers Testing |
| Title | Scaling Molecular Dynamics with ab initio Accuracy to 149 Nanoseconds per Day |
| URI | https://ieeexplore.ieee.org/document/10793130 |
| WOSCitedRecordID | wos001414891300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-5YE14NSpnYyoUDHQqlJB6lbZ54vUpamaFKn_nrukARYGtjhSFOl89vn57r0T4h4p6JpUQ8RiX1GS-IzWXN9H4FNwSOf_3NXq-m92Mknn82y6J6vXXBhErIvP8IEf61x-KGDLV2W0wsmbaNPtiI61piFrtc4zsFaTt-qWGKOyx9kwIfjAdQh9lshWLMP8q4VKHUFGx__894no_XDx5PQ7ypyKA1ydifGMTEtDOW6728rnprV8KflmVTovl1wWVMgngO3GwU5WhSScImk7LUpGwaGUa6Tv3K4nPkYv78PXaN8YIXKE5yqCex5thqn1VnnXB8sspDAAg2mOPrd6oFDHiY8VGJdnWnFuz2lOStJ5xqI-F91VscILITEoSIIHY5zjik9nTeJ90DoOxsWAl6LHtlisG-2LRWuGqz_eX4sjNjez9WJ7I7rVZou34hA-q2W5uatn7Augd5ZR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXitpk2atEeZjonbGGzCbiNJX8HLOtZO2H_ve92qXjx4awql8PKSly_vfd9j7B4w6OpE-oDEvgKlXIprLnKBd4m3gOf_3Nbq-n0zHCbTaTraktVrLgwA1MVn8ECPdS4_K_yKrspwhaM34aa7y_ZipSKxoWs17hMbI9FfZUONEenjuKMQQFAlQkQi2YKEmH81UaljSPfon38_Zu0fNh4ffceZE7YD81M2GKNxccgHTX9b_rxpLl9yulvl1vEPKgwq-JP3q6X1a14VHJEKxw21KAkHZyVfAH5n12323n2ZdHrBtjVCYBHRVQj4HJgUEuOMcDbyhnhIWew1JDm43MhYgAyVC4XXNk-loOyelZSWxBONAXnGWvNiDueMQya8ypzX2lqq-bRGK-cyKcNM29DDBWuTLWaLjfrFrDHD5R_v79hBbzLoz_qvw7crdkimJ-5eaK5Zq1qu4Ibt-8_qo1ze1rP3BaSBmZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24%3A+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=Scaling+Molecular+Dynamics+with+ab+initio+Accuracy+to+149+Nanoseconds+per+Day&rft.au=Li%2C+Jianxiong&rft.au=Li%2C+Boyang&rft.au=Guo%2C+Zhuoqiang&rft.au=Li%2C+Mingzhen&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FSC41406.2024.00036&rft.externalDocID=10793130 |