AmgT: Algebraic Multigrid Solver on Tensor Cores

Algebraic multigrid (AMG) methods are particularly efficient to solve a wide range of sparse linear systems, due to their good flexibility and adaptability. Even though modern parallel devices, such as GPUs, brought massive parallelism to AMG, the latest major hardware features, i.e., tensor core un...

Full description

Saved in:
Bibliographic Details
Published in:SC24: International Conference for High Performance Computing, Networking, Storage and Analysis pp. 1 - 16
Main Authors: Lu, Yuechen, Zeng, Lijie, Wang, Tengcheng, Fu, Xu, Li, Wenxuan, Cheng, Helin, Yang, Dechuang, Jin, Zhou, Casas, Marc, Liu, Weifeng
Format: Conference Proceeding
Language:English
Published: IEEE 17.11.2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Algebraic multigrid (AMG) methods are particularly efficient to solve a wide range of sparse linear systems, due to their good flexibility and adaptability. Even though modern parallel devices, such as GPUs, brought massive parallelism to AMG, the latest major hardware features, i.e., tensor core units and their low precision compute power, have not been exploited to accelerate AMG. This paper proposes AmgT, a new AMG solver that utilizes the tensor core and mixed precision ability of the latest GPUs during multiple phases of the AMG algorithm. Considering that the sparse general matrix-matrix multiplication (SpGEMM) and sparse matrix-vector multiplication (SpMV) are extensively used in the setup and solve phases, respectively, we propose a novel method based on a new unified sparse storage format that leverages tensor cores and their variable precision. Our method improves both the performance of GPU kernels, and also reduces the cost of format conversion in the whole data flow of AMG. To better utilize the algorithm components in existing libraries, the data format and compute kernels of the AmgT solver are incorporated into the HYPRE library. The experimental results on NVIDIA A100, H100 and AMD MI210 GPUs show that our AmgT outperforms the original GPU version of HYPRE by a factor of on geomean 1.46 \times, 1.32 \times and 2.24 \times (up to 2.10 \times, 2.06 \times and 3.67 \times), respectively.
AbstractList Algebraic multigrid (AMG) methods are particularly efficient to solve a wide range of sparse linear systems, due to their good flexibility and adaptability. Even though modern parallel devices, such as GPUs, brought massive parallelism to AMG, the latest major hardware features, i.e., tensor core units and their low precision compute power, have not been exploited to accelerate AMG. This paper proposes AmgT, a new AMG solver that utilizes the tensor core and mixed precision ability of the latest GPUs during multiple phases of the AMG algorithm. Considering that the sparse general matrix-matrix multiplication (SpGEMM) and sparse matrix-vector multiplication (SpMV) are extensively used in the setup and solve phases, respectively, we propose a novel method based on a new unified sparse storage format that leverages tensor cores and their variable precision. Our method improves both the performance of GPU kernels, and also reduces the cost of format conversion in the whole data flow of AMG. To better utilize the algorithm components in existing libraries, the data format and compute kernels of the AmgT solver are incorporated into the HYPRE library. The experimental results on NVIDIA A100, H100 and AMD MI210 GPUs show that our AmgT outperforms the original GPU version of HYPRE by a factor of on geomean 1.46 \times, 1.32 \times and 2.24 \times (up to 2.10 \times, 2.06 \times and 3.67 \times), respectively.
Author Li, Wenxuan
Cheng, Helin
Jin, Zhou
Wang, Tengcheng
Liu, Weifeng
Lu, Yuechen
Casas, Marc
Fu, Xu
Yang, Dechuang
Zeng, Lijie
Author_xml – sequence: 1
  givenname: Yuechen
  surname: Lu
  fullname: Lu, Yuechen
  email: yuechenlu@student.cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 2
  givenname: Lijie
  surname: Zeng
  fullname: Zeng, Lijie
  email: lijie.zeng@student.cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 3
  givenname: Tengcheng
  surname: Wang
  fullname: Wang, Tengcheng
  email: tengcheng.wang@student.cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 4
  givenname: Xu
  surname: Fu
  fullname: Fu, Xu
  email: xu.fu@student.cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 5
  givenname: Wenxuan
  surname: Li
  fullname: Li, Wenxuan
  email: wenxuan.li@student.cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 6
  givenname: Helin
  surname: Cheng
  fullname: Cheng, Helin
  email: helin.cheng@student.cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 7
  givenname: Dechuang
  surname: Yang
  fullname: Yang, Dechuang
  email: dechuang.yang@student.cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 8
  givenname: Zhou
  surname: Jin
  fullname: Jin, Zhou
  email: jinzhou@cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
– sequence: 9
  givenname: Marc
  surname: Casas
  fullname: Casas, Marc
  email: marc.casas@bsc.es
  organization: Barcelona Supercomputing Center,Spain
– sequence: 10
  givenname: Weifeng
  surname: Liu
  fullname: Liu, Weifeng
  email: weifeng.liu@cup.edu.cn
  organization: China University of Petroleum,Super Scientific Software Laboratory,Dept. of CST,Beijing,China
BookMark eNotzMtKxDAUANAICurYHxAX-YHWe_NoEnel6CiMuJi6HhJzUwKdVtJR8O9d6OrszjU7n5eZGLtFaBDB3e97hQraRoBQDQBoe8YqZ5yVGqQWDs0lq9Y1B9DGSCNBXjHojuPwwLtppFB8_uCvX9MpjyVHvl-mbyp8mflA87oU3i-F1ht2kfy0UvXvhr0_PQ79c71727703a72QqtTrbwRijQmFYRFIVUbtXItWoiSAhmBUgebUtAmgsdkMNhIyTmPjkSUcsPu_t5MRIfPko--_BwQjJOolPwF0uZDcg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SC41406.2024.00058
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350352917
EndPage 16
ExternalDocumentID 10793144
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Generalitat de Catalunya
  funderid: 10.13039/501100002809
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a254t-4a724e51f4b2812346d5496180d3ebe72135b8ffb57d0a1f71b8def99a19e2d33
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414891300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 01 06:01:57 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a254t-4a724e51f4b2812346d5496180d3ebe72135b8ffb57d0a1f71b8def99a19e2d33
PageCount 16
ParticipantIDs ieee_primary_10793144
PublicationCentury 2000
PublicationDate 2024-Nov.-17
PublicationDateYYYYMMDD 2024-11-17
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle SC24: International Conference for High Performance Computing, Networking, Storage and Analysis
PublicationTitleAbbrev SC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib057737303
Score 1.912274
Snippet Algebraic multigrid (AMG) methods are particularly efficient to solve a wide range of sparse linear systems, due to their good flexibility and adaptability....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms AMG
Costs
Graphics processing units
Hardware
High performance computing
Kernel
Libraries
Linear systems
mixed precision
Parallel processing
Sparse matrices
SpGEMM
SpMV
tensor core unit
Tensors
Title AmgT: Algebraic Multigrid Solver on Tensor Cores
URI https://ieeexplore.ieee.org/document/10793144
WOSCitedRecordID wos001414891300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhd3WySTdZbKRYPUgqt0FvJY1IKuitr6-93krbqxYO3kByGmUyYfJn5MoTcWldJaYoy0yB4JhyedKMVz3hgvrDM4moiCj-r0UjPZtV4S1ZPXBgASMVncBeHKZfvG7eOT2V4wtGbEAF0SEcptSFr7ZxHKsXRW_mOGJNX95OBQPgQ6xCK-EV2Htu6_2qhkiLI8PCfso9I74eLR8ffUeaY7EF9QvL-22L6QPuvi5j3XTqaeLSLdunppIm1zrSp6RQRatPSAUr66JGX4eN08JRtex9kBiHbKhNGFQIkC8IWGIO5KD0iuZLp3HO0O-I2Lq0OwUrlc8OCYlZ7CFVlWAWF5_yUdOumhjNCdS6d0q4EIb0wTprAvdV4MZI-KANwTnpR3fn75nuL-U7Tiz_mL8lBtGgk5DF1Rbqrdg3XZN99rpYf7U3alC_W9Yxl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl5XN5tkk_VWiqViLYWu0FvJsxR0V7Zbf7-TbatePHgLyWGYyYTJl5kvg9CtNhnnKkkj6RiNmIGTrqSgEfXEJppoWG2IwgMxHMrJJButyeoNF8Y51xSfubswbHL5tjTL8FQGJxy8CRDANtrhjCVkRdfauA8XgoK_0g01Js7ux10GACJUIiThk-w4NHb_1USliSG9g39KP0TtHzYeHn3HmSO05YpjFHfeZ_kD7rzNQuZ3bnDDpJ1Vc4vHZah2xmWBc8CoZYW7IGnRRq-9x7zbj9bdDyIFoK2OmBIJc5x4phOIwpSlFrBcSmRsKVgekBvlWnqvubCxIl4QLa3zWaZI5hJL6QlqFWXhThGWMTdCmtQxbpkyXHlqtYSrEbdeKOfOUDuoO_1YfXAx3Wh6_sf8Ddrr5y-D6eBp-HyB9oN1Az2PiEvUqqulu0K75rOeL6rrZoO-AFlCj6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC24%3A+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=AmgT%3A+Algebraic+Multigrid+Solver+on+Tensor+Cores&rft.au=Lu%2C+Yuechen&rft.au=Zeng%2C+Lijie&rft.au=Wang%2C+Tengcheng&rft.au=Fu%2C+Xu&rft.date=2024-11-17&rft.pub=IEEE&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FSC41406.2024.00058&rft.externalDocID=10793144