Machine learning algorithms reference guide for popular algorithms for data science and machine learning

As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading str...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Bonaccorso, Giuseppe
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Birmingham PACKT Publishing 2017
Packt Pub
Packt Publishing, Limited
Packt Publishing Limited
Vydání:1st ed.
Témata:
ISBN:9781785889622, 1785889621, 1785884514, 9781785884511
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.
AbstractList As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.
Author Bonaccorso, Giuseppe
Author_xml – sequence: 1
  fullname: Bonaccorso, Giuseppe
BackLink https://cir.nii.ac.jp/crid/1130000794861505792$$DView record in CiNii
BookMark eNpVkDtPwzAQx414iLZ0ZGLpgAQMhfgV22OJykMUwVCxWn4lNaRJcVKhfnscBVXihnvofv873Q3BUVVXDoBzmNwm0e4E45BxyjmhEB6A4b4gh2C8b4oUoRMwEEKkJFbsFIyb5jPqoSCYMzQAF6_KrHzlJqVTofJVMVFlUQffrtbNGTjOVdm48V8cgY-H-TJ7mi7eHp-z2WKqEMUYTq0mirucJc4aw3GuNbLQIsSEMjaxTgsLucNaUIsU0TnrstxS7gTlmio8Ajf94B9Vti5YV4TtLiZyrYKR_06N7FXPbkL9vXVNK52u6y_jqjaoUs7vMyJQGg-P5GVPVt5L4zsf9d33mCA8hTShTHTYdY_5YrPVpW_iOwq5CT4u38n3Wfay7DQIJ_gXOvJq6Q
ContentType eBook
Book
DBID PASLL
RYH
DEWEY 006.31
DOI 10.0000/9781785884511
DatabaseName Packt Publishing
CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1785884514
9781785884511
Edition 1st ed.
1
ExternalDocumentID 9781785884511
EBC4926962
BB25645801
PACKT0000230
GroupedDBID 20A
38.
AAFKH
AAKGN
AANYM
AAWZI
AAZEP
AAZGR
ABIWA
ABRSK
ABWNX
ACBYE
ACXXF
ADBND
AECLD
AEHEP
AEIUR
AFQEX
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
AZZ
BSWCA
CMZ
E2F
J-X
JJU
K-E
L7C
OHILO
OODEK
PASLL
PYZUL
QD8
TD3
UE6
RYH
AVGCG
ID FETCH-LOGICAL-a25331-db4a8ef70edcc83fbb2d1d2279acd0deb9d18e3b95d2a4bf7b95dfd58e958b5a3
ISBN 9781785889622
1785889621
1785884514
9781785884511
IngestDate Fri Nov 21 20:05:59 EST 2025
Wed Dec 10 12:45:20 EST 2025
Thu Jun 26 21:48:20 EDT 2025
Tue Jul 22 02:39:43 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum Q325.5
LCCallNum_Ident Q325.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a25331-db4a8ef70edcc83fbb2d1d2279acd0deb9d18e3b95d2a4bf7b95dfd58e958b5a3
Notes Includes bibliographical references and index
OCLC 999648897
PQID EBC4926962
PageCount 352
ParticipantIDs walterdegruyter_marc_9781785884511
proquest_ebookcentral_EBC4926962
nii_cinii_1130000794861505792
igpublishing_primary_PACKT0000230
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2017.
2017
[2017]
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
– name: Birmingham, UK
PublicationYear 2017
Publisher PACKT Publishing
Packt Pub
Packt Publishing, Limited
Packt Publishing Limited
Publisher_xml – name: PACKT Publishing
– name: Packt Pub
– name: Packt Publishing, Limited
– name: Packt Publishing Limited
RestrictionsOnAccess restricted access
SSID ssj0001943872
Score 2.1073337
Snippet As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for...
SourceID walterdegruyter
proquest
nii
igpublishing
SourceType Publisher
SubjectTerms Big Data and Business Intelligence
COM018000 COMPUTERS / Data Processing
Computer algorithms
COMPUTERS / Programming / Algorithms
COMPUTERS / Programming Languages / Python
Machine learning
SubjectTermsDisplay Big Data and Business Intelligence
Computer algorithms
Machine learning
Subtitle reference guide for popular algorithms for data science and machine learning
TableOfContents Machine learning algorithms: reference guide for popular algorithms for data science and machine learning -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- 1. A Gentle Introduction to Machine Learning -- 2. Important Elements in Machine Learning -- 3. Feature Selection and Feature Engineering -- 4. Linear Regression -- 5. Logistic Regression -- 6. Naive Bayes -- 7. Support Vector Machines -- 8. Decision Trees and Ensemble Learning -- 9. Clustering Fundamentals -- 10. Hierarchical Clustering -- 11. Introduction to Recommendation Systems -- 12. Introduction to Natural Language Processing -- 13. Topic Modeling and Sentiment Analysis in NLP -- 14. A Brief Introduction to Deep Learning and TensorFlow -- 15. Creating a Machine Learning Architecture -- Index.
Alternating least squares with Apache Spark MLlib -- References -- Summary -- Chapter 12: Introduction to Natural Language Processing -- NLTK and built-in corpora -- Corpora examples -- The bag-of-words strategy -- Tokenizing -- Sentence tokenizing -- Word tokenizing -- Stopword removal -- Language detection -- Stemming -- Vectorizing -- Count vectorizing -- N-grams -- Tf-idf vectorizing -- A sample text classifier based on the Reuters corpus -- References -- Summary -- Chapter 13: Topic Modeling and Sentiment Analysis in NLP -- Topic modeling -- Latent semantic analysis -- Probabilistic latent semantic analysis -- Latent Dirichlet Allocation -- Sentiment analysis -- VADER sentiment analysis with NLTK -- References -- Summary -- Chapter 14: A Brief Introduction to Deep Learning and TensorFlow -- Deep learning at a glance -- Artificial neural networks -- Deep architectures -- Fully connected layers -- Convolutional layers -- Dropout layers -- Recurrent neural networks -- A brief introduction to TensorFlow -- Computing gradients -- Logistic regression -- Classification with a multi-layer perceptron -- Image convolution -- A quick glimpse inside Keras -- References -- Summary -- Chapter 15: Creating a Machine Learning Architecture -- Machine learning architectures -- Data collection -- Normalization -- Dimensionality reduction -- Data augmentation -- Data conversion -- Modeling/Grid search/Cross-validation -- Visualization -- scikit-learn tools for machine learning architectures -- Pipelines -- Feature unions -- References -- Summary -- Index
Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: A Gentle Introduction to Machine Learning -- Introduction - classic and adaptive machines -- Only learning matters -- Supervised learning -- Unsupervised learning -- Reinforcement learning -- Beyond machine learning - deep learning and bio-inspired adaptive systems -- Machine learning and big data -- Further reading -- Summary -- Chapter 2: Important Elements in Machine Learning -- Data formats -- Multiclass strategies -- One-vs-all -- One-vs-one -- Learnability -- Underfitting and overfitting -- Error measures -- PAC learning -- Statistical learning approaches -- MAP learning -- Maximum-likelihood learning -- Elements of information theory -- References -- Summary -- Chapter 3: Feature Selection and Feature Engineering -- scikit-learn toy datasets -- Creating training and test sets -- Managing categorical data -- Managing missing features -- Data scaling and normalization -- Feature selection and filtering -- Principal component analysis -- Non-negative matrix factorization -- Sparse PCA -- Kernel PCA -- Atom extraction and dictionary learning -- References -- Summary -- Chapter 4: Linear Regression -- Linear models -- A bidimensional example -- Linear regression with scikit-learn and higher dimensionality -- Regressor analytic expression -- Ridge, Lasso, and ElasticNet -- Robust regression with random sample consensus -- Polynomial regression -- Isotonic regression -- References -- Summary -- Chapter 5: Logistic Regression -- Linear classification -- Logistic regression -- Implementation and optimizations -- Stochastic gradient descent algorithms -- Finding the optimal hyperparameters through grid search -- Classification metrics -- ROC curve -- Summary -- Chapter 6: Naive Bayes
Bayes' theorem -- Naive Bayes classifiers -- Naive Bayes in scikit-learn -- Bernoulli naive Bayes -- Multinomial naive Bayes -- Gaussian naive Bayes -- References -- Summary -- Chapter 7: Support Vector Machines -- Linear support vector machines -- scikit-learn implementation -- Linear classification -- Kernel-based classification -- Radial Basis Function -- Polynomial kernel -- Sigmoid kernel -- Custom kernels -- Non-linear examples -- Controlled support vector machines -- Support vector regression -- References -- Summary -- Chapter 8: Decision Trees and Ensemble Learning -- Binary decision trees -- Binary decisions -- Impurity measures -- Gini impurity index -- Cross-entropy impurity index -- Misclassification impurity index -- Feature importance -- Decision tree classification with scikit-learn -- Ensemble learning -- Random forests -- Feature importance in random forests -- AdaBoost -- Gradient tree boosting -- Voting classifier -- References -- Summary -- Chapter 9: Clustering Fundamentals -- Clustering basics -- K-means -- Finding the optimal number of clusters -- Optimizing the inertia -- Silhouette score -- Calinski-Harabasz index -- Cluster instability -- DBSCAN -- Spectral clustering -- Evaluation methods based on the ground truth -- Homogeneity -- Completeness -- Adjusted rand index -- References -- Summary -- Chapter 10: Hierarchical Clustering -- Hierarchical strategies -- Agglomerative clustering -- Dendrograms -- Agglomerative clustering in scikit-learn -- Connectivity constraints -- References -- Summary -- Chapter 11: Introduction to Recommendation Systems -- Naive user-based systems -- User-based system implementation with scikit-learn -- Content-based systems -- Model-free (or memory-based) collaborative filtering -- Model-based collaborative filtering -- Singular Value Decomposition strategy -- Alternating least squares strategy
Machine Learning Algorithms: A reference guide to popular algorithms for data science and machine learning
Title Machine learning algorithms
URI http://portal.igpublish.com/iglibrary/search/PACKT0000230.html
https://cir.nii.ac.jp/crid/1130000794861505792
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4926962
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI6AceDCGzFeKogbqmj6IMkRJhASD-0wTROXKmmSUgHdtI3Xv8fpa2tPcOASpVHSKnYV27H9GaFTrP3IB8ljeyAtbN8l2maMC5sLR2CpmVRZ8Hj_njw-0sGAdYvSXZOsnABJU_r1xUb_ymoYA2ab1Nk_sLt6KQxAH5gOLbAd2oZGXD0WBZmyuEhVQqbGZ5ev8RBs_-e3mm2PScO27_LoZTp_H1VPesptQEyoSTYN8jOreSIaeZQHQdTn1ZGnGxKhitOrLVtELdcPPFOgoPPwNLvIYr5HiZvjl5rPnddWGQjYeFRtAUR4miQ1dX71MwsMkCoev39PS0d0Jt9766ilTNLHBlpQ6SZaK0tdWMXJt4X2C-JaJXGtGXG3Uf_mute5tYu6EjZ3QbvFthQ-p0oTR8koop4WwpVYGixFHklHKsEkpsoTLJAu94UmpqdlQBULqAi4t4OW0mGqdpElVaA9T1PCQFECbZtGlIFNSrmQBLtEttHx_PbDUY4hEnYvO3c9J4MbctroEGgSRolpsfEvguLGfGqw-gPC3DaySmqFmQu9iNsNr686Bu-RXcCUkwYVQwOFEtZYsfebSftoZfYnHqCl6fhdHaLl6GOaTMZHGet_AMkDKwM
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+Learning+Algorithms&rft.date=2017-01-01&rft.pub=Packt+Publishing+Limited&rft.isbn=9781785884511&rft_id=info:doi/10.0000%2F9781785884511&rft.externalDBID=n%2Fa&rft.externalDocID=9781785884511
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FPACKT0000230_null_0_320.png