AdaOPC: A Self-Adaptive Mask Optimization Framework For Real Design Patterns

Optical proximity correction (OPC) is a widely-used resolution enhancement technique (RET) for printability optimization. Recently, rigorous numerical optimization and fast machine learning are the research focus of OPC in both academia and industry, each of which complements the other in terms of r...

Full description

Saved in:
Bibliographic Details
Published in:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) pp. 1 - 9
Main Authors: Zhao, Wenqian, Yao, Xufeng, Yu, Ziyang, Chen, Guojin, Ma, Yuzhe, Yu, Bei, Wong, Martin D.F.
Format: Conference Proceeding
Language:English
Published: ACM 29.10.2022
Subjects:
ISSN:1558-2434
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optical proximity correction (OPC) is a widely-used resolution enhancement technique (RET) for printability optimization. Recently, rigorous numerical optimization and fast machine learning are the research focus of OPC in both academia and industry, each of which complements the other in terms of robustness or efficiency. We inspect the pattern distribution on a design layer and find that different sub-regions have different pattern complexity. Besides, we also find that many patterns repetitively appear in the design layout, and these patterns may possibly share optimized masks. We exploit these properties and propose a self-adaptive OPC framework to improve efficiency. Firstly we choose different OPC solvers adaptively for patterns of different complexity from an extensible solver pool to reach a speed/accuracy co-optimization. Apart from that, we prove the feasibility of reusing optimized masks for repeated patterns and hence, build a graph-based dynamic pattern library reusing stored masks to further speed up the OPC flow. Experimental results show that our framework achieves substantial improvement in both performance and efficiency.
AbstractList Optical proximity correction (OPC) is a widely-used resolution enhancement technique (RET) for printability optimization. Recently, rigorous numerical optimization and fast machine learning are the research focus of OPC in both academia and industry, each of which complements the other in terms of robustness or efficiency. We inspect the pattern distribution on a design layer and find that different sub-regions have different pattern complexity. Besides, we also find that many patterns repetitively appear in the design layout, and these patterns may possibly share optimized masks. We exploit these properties and propose a self-adaptive OPC framework to improve efficiency. Firstly we choose different OPC solvers adaptively for patterns of different complexity from an extensible solver pool to reach a speed/accuracy co-optimization. Apart from that, we prove the feasibility of reusing optimized masks for repeated patterns and hence, build a graph-based dynamic pattern library reusing stored masks to further speed up the OPC flow. Experimental results show that our framework achieves substantial improvement in both performance and efficiency.
Author Chen, Guojin
Ma, Yuzhe
Yao, Xufeng
Zhao, Wenqian
Yu, Bei
Yu, Ziyang
Wong, Martin D.F.
Author_xml – sequence: 1
  givenname: Wenqian
  surname: Zhao
  fullname: Zhao, Wenqian
  organization: CUHK
– sequence: 2
  givenname: Xufeng
  surname: Yao
  fullname: Yao, Xufeng
  organization: CUHK
– sequence: 3
  givenname: Ziyang
  surname: Yu
  fullname: Yu, Ziyang
  organization: CUHK
– sequence: 4
  givenname: Guojin
  surname: Chen
  fullname: Chen, Guojin
  organization: CUHK
– sequence: 5
  givenname: Yuzhe
  surname: Ma
  fullname: Ma, Yuzhe
  organization: HKUST(GZ)
– sequence: 6
  givenname: Bei
  surname: Yu
  fullname: Yu, Bei
  organization: CUHK
– sequence: 7
  givenname: Martin D.F.
  surname: Wong
  fullname: Wong, Martin D.F.
  organization: CUHK
BookMark eNotjEtLw0AUhUdRsNau3biYP5B6Z-bOI-5KNCpEUnysy23nRmLbpCRB0V9vQFfnfOeDcy5OmrZhIS4VzJVCe20sBGP13FhM0YUjMUt9GAWYVCuPx2KirA2JRoNnYtb3HwCgg1few0QUi0jlMruRC_nCuyoZ8TDUnyyfqN_Kcuz7-oeGum1k3tGev9puK_O2k89MO3nLff3eyCUNA3dNfyFOK9r1PPvPqXjL716zh6Qo7x-zRZGQxjAkTOvKVHaduogxYExjMKC9AwUBybtNqJjJw6aiDShnMMSIa0ugmVlHZ6bi6u-3HofVoav31H2vFIBLA2rzC0hpTw8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549468
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10069842
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a248t-eabf3f5b96d4d84d9d83027601084a76c8feea70cfac016348dd4b5a02eee2d63
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-eabf3f5b96d4d84d9d83027601084a76c8feea70cfac016348dd4b5a02eee2d63
PageCount 9
ParticipantIDs ieee_primary_10069842
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.2993999
Snippet Optical proximity correction (OPC) is a widely-used resolution enhancement technique (RET) for printability optimization. Recently, rigorous numerical...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Industries
Layout
Libraries
Machine learning
Robustness
Search problems
Shape
Title AdaOPC: A Self-Adaptive Mask Optimization Framework For Real Design Patterns
URI https://ieeexplore.ieee.org/document/10069842
WOSCitedRecordID wos000981574300122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV03TwMxFLYgYoCFFkSXB9YLl3M9tihwYoDkRJGyRa4SglyiFH4_z84lZGFgsy1Zcn3Fft_3ELqxzLFUCZVQygg4KBTkYJuJxGdOUXAHiJE2JpsQvZ4cDPKyBqtHLIxzLgafuVYoxr98OzaL8FQGNzzluaQgcbeFEEuw1vpBJZj-Ihy-2tuCBl5z-bQpuyUsGhstAg4RDcSqG8lUoi4p9v85igPU_EXl4XKtbw7RlquO0N4GoeAxeupY1S-7d7iDX92XT6A6CfIMP6vZJ-5DeVTjLnGxisrCxXiKX8BexPcxmgOXkXKzmjXRe_Hw1n1M6nwJicqonCdOaU880zm31EpqcxvIvULQSyqpEtxI75wSqfHKgKVHqLSWaqbSDOaYWU5OUKMaV-4UYUskN4oro0H9i7aWjBkidJ5qnXnodIaaYWGGkyUlxnC1Jud_tF-g3SzgBkDoZ_klasynC3eFdsz3_GM2vY4b-QPAhJzb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQQQIubEXs-MA1JfEeblUhKqJLBEXqrfIWCQFp1YXvx3ZD6YUDN9tSpNhOZt7Y894AcGOopbHkMiKEYhegEGcHE8qjAllJXDiAtTCh2ATv9cRwmOYVWT1wYay1IfnMNnwz3OWbsV74ozL3h8csFcRZ3E1KCEqWdK3VkYoH_9x_flW85QZYpeaTEHqLaYAbDexCIuKlVdfKqQRvku398z32Qf2Xlwfzlcc5ABu2PAS7a5KCR6DTNLKft-5gE77YjyJy3Ym3aLArZ--w79qfFfMSZj95WTAbT-GzQ4zwPuRzwDyIbpazOnjNHgatdlRVTIgkImIeWakKXFCVMkOMICY1Xt7Lp73EgkjOtCislTzWhdQO62EijCGKyhi5OSLD8DGolePSngBosGBaMqmVAwA8UYJSjblKY6VQ4R46BXW_MKPJUhRj9LMmZ3-MX4Pt9qDbGXUee0_nYAd5FoFzASi9ALX5dGEvwZb-mr_NpldhU78BGpygIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=AdaOPC%3A+A+Self-Adaptive+Mask+Optimization+Framework+For+Real+Design+Patterns&rft.au=Zhao%2C+Wenqian&rft.au=Yao%2C+Xufeng&rft.au=Yu%2C+Ziyang&rft.au=Chen%2C+Guojin&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549468&rft.externalDocID=10069842