How Good Is Your Verilog RTL Code? A Quick Answer from Machine Learning

Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) s. 1 - 9
Hlavní autoři: Sengupta, Prianka, Tyagi, Aakash, Chen, Yiran, Hu, Jiang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 29.10.2022
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO's), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement.
AbstractList Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO's), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement.
Author Sengupta, Prianka
Hu, Jiang
Chen, Yiran
Tyagi, Aakash
Author_xml – sequence: 1
  givenname: Prianka
  surname: Sengupta
  fullname: Sengupta, Prianka
  email: prianka.sengupta@tamu.edu
  organization: Texas A&M University,College Station,Texas,USA
– sequence: 2
  givenname: Aakash
  surname: Tyagi
  fullname: Tyagi, Aakash
  email: tyagi@cse.tamu.edu
  organization: Texas A&M University,College Station,Texas,USA
– sequence: 3
  givenname: Yiran
  surname: Chen
  fullname: Chen, Yiran
  email: yiran.chen@duke.edu
  organization: Duke University,Durham,N Carolina,USA
– sequence: 4
  givenname: Jiang
  surname: Hu
  fullname: Hu, Jiang
  email: jianghu@tamu.edu
  organization: Texas A&M University,College Station,Texas,USA
BookMark eNotj0FLwzAYhqMoOGfPXjzkD3Qm-ZImPUkZrhtURJmCp5EmX2d1SyR1DP-9BT09h_fhheeSnIUYkJBrzmacS3ULihlQYgZKlqDVCclKbcaBQSm4lqdkwpUyuZAgL0g2DB-MMWE015pNSL2MR1rH6OlqoG_xkOgrpn4Xt_R53dB59HhHK_p06N0nrcJwxES7FPf0wbr3PiBt0KbQh-0VOe_sbsDsn1Pysrhfz5d581iv5lWTWyHNd94iByELB5Jxi6I1yvCO6xKEV15yXYjCSe3Rejta0gNYiaOpnBBOdS1Myc3fb4-Im6_U72362XDGinKMgl_MekvJ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549375
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10069028
Genre orig-research
GrantInformation_xml – fundername: Semiconductor Research Corporation
  funderid: 10.13039/100000028
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a248t-be13246c3401ae2b8581f17932d5d417626c47deada46c4d33a4e1ae5c22c5fb3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-be13246c3401ae2b8581f17932d5d417626c47deada46c4d33a4e1ae5c22c5fb3
PageCount 9
ParticipantIDs ieee_primary_10069028
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.358303
Snippet Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Codes
Design automation
Encoding
Hardware design languages
Layout
Machine learning
Performance and Power
Prediction methods
Verilog RTL
Title How Good Is Your Verilog RTL Code? A Quick Answer from Machine Learning
URI https://ieeexplore.ieee.org/document/10069028
WOSCitedRecordID wos000981574300088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6EeNCLL4zv9OB1ke1jHydDiIAJEjRouJE-Zg0x2TULyN93Wlbk4sFbM22apu1MO-183xByq0KrjbWtQGbMBkJDGqjU6EAIyxLDTagzn7VkEA-HyWSSjiqwusfCAIAPPoOmK_q_fFuYpXsqQw13vLosqZFaHMdrsNbmQcVd_WO3-SpvCwVRxeUTCnnHpb9sNDk6RNxFFW4lU_FnSffgn6M4JI1fVB4dbc6bI7ID-THZ3yIUPCG9frGivaKw9HFOUZFL-oY1aN7oy3hAO4WFe9qmz8uZ-aDtfL6Ckjp8CX3yIZVAK7bV9wZ57T6MO_2gSpUQKCaSRaABvUoRGY7ukgKmE5mEmdM9ZqUVIVq8yIjY4rZR2EpYzpUAbCkNY0Zmmp-Sel7kcEaozFQiUsYA-xNppFWGfcc2S1tWM6nFOWm4OZl-rtkwpj_TcfGH_JLsMQcZQHvP0itSX5RLuCa75msxm5c3fg2_AWQQmtg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTdSLL4xve_C6yPaxj5MhRB5xIWjQcCN9zBJismsWkL9vW1bk4sFbM22apu1MO-183yB0L3wtldZ1j6dEe0xC7IlYSY8xTSJFlS9Tl7UkCfv9aDSKByVY3WFhAMAFn0HNFt1fvs7Vwj6VGQ23vLok2kY7nDHir-Ba6ycVe_kP7fYr_S0jCEo2H5_xB8rddaNGjUtEbVzhRjoVd5q0Dv85jiNU_cXl4cH6xDlGW5CdoIMNSsFT1O7kS9zOc427M2xUucDvpsYYOPw6THAz1_CIG_hlMVUfuJHNllBgizDBPRdUCbjkW51U0VvradjseGWyBE8QFs09CcavZIGixmESQGTEIz-12kc018w3Ni9QLNRm4wjTimlKBQPTkitCFE8lPUOVLM_gHGGeiojFhIDpj8WBFKnpO9RpXNeScMkuUNXOyfhzxYcx_pmOyz_kd2ivM-wl46Tbf75C-8QCCIz1J_E1qsyLBdygXfU1n86KW7ee36dcnh8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=How+Good+Is+Your+Verilog+RTL+Code%3F+A+Quick+Answer+from+Machine+Learning&rft.au=Sengupta%2C+Prianka&rft.au=Tyagi%2C+Aakash&rft.au=Chen%2C+Yiran&rft.au=Hu%2C+Jiang&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549375&rft.externalDocID=10069028