HyperEF: Spectral Hypergraph Coarsening by Effective-Resistance Clustering

This paper introduces a scalable algorithmic framework (HyperEF) for spectral coarsening (decomposition) of large-scale hypergraphs by exploiting hyperedge effective resistances. Motivated by the latest theoretical framework for low-resistance-diameter decomposition of simple graphs, HyperEF aims at...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) s. 1 - 9
Hlavní autoři: Aghdaei, Ali, Feng, Zhuo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 29.10.2022
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper introduces a scalable algorithmic framework (HyperEF) for spectral coarsening (decomposition) of large-scale hypergraphs by exploiting hyperedge effective resistances. Motivated by the latest theoretical framework for low-resistance-diameter decomposition of simple graphs, HyperEF aims at decomposing large hypergraphs into multiple node clusters with only a few inter-cluster hyperedges. The key component in HyperEF is a nearly-linear time algorithm for estimating hyperedge effective resistances, which allows incorporating the latest diffusion-based non-linear quadratic operators defined on hypergraphs. To achieve good runtime scalability, HyperEF searches within the Krylov subspace (or approximate eigensubspace) for identifying the nearly-optimal vectors for approximating the hyperedge effective resistances. In addition, a node weight propagation scheme for multilevel spectral hypergraph decomposition has been introduced for achieving even greater node coarsening ratios. When compared with state-of-the-art hypergraph partitioning (clustering) methods, extensive experiment results on real-world VLSI designs show that HyperEF can more effectively coarsen (decompose) hypergraphs without losing key structural (spectral) properties of the original hypergraphs, while achieving over 70× runtime speedups over hMetis and 20× speedups over HyperSF.
AbstractList This paper introduces a scalable algorithmic framework (HyperEF) for spectral coarsening (decomposition) of large-scale hypergraphs by exploiting hyperedge effective resistances. Motivated by the latest theoretical framework for low-resistance-diameter decomposition of simple graphs, HyperEF aims at decomposing large hypergraphs into multiple node clusters with only a few inter-cluster hyperedges. The key component in HyperEF is a nearly-linear time algorithm for estimating hyperedge effective resistances, which allows incorporating the latest diffusion-based non-linear quadratic operators defined on hypergraphs. To achieve good runtime scalability, HyperEF searches within the Krylov subspace (or approximate eigensubspace) for identifying the nearly-optimal vectors for approximating the hyperedge effective resistances. In addition, a node weight propagation scheme for multilevel spectral hypergraph decomposition has been introduced for achieving even greater node coarsening ratios. When compared with state-of-the-art hypergraph partitioning (clustering) methods, extensive experiment results on real-world VLSI designs show that HyperEF can more effectively coarsen (decompose) hypergraphs without losing key structural (spectral) properties of the original hypergraphs, while achieving over 70× runtime speedups over hMetis and 20× speedups over HyperSF.
Author Feng, Zhuo
Aghdaei, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Aghdaei
  fullname: Aghdaei, Ali
  email: aaghdae1@stevens.edu
  organization: Stevens Institute of Technology
– sequence: 2
  givenname: Zhuo
  surname: Feng
  fullname: Feng, Zhuo
  email: zhuo.feng@stevens.edu
  organization: Stevens Institute of Technology
BookMark eNotjM1Kw0AYRUdRsNas3biYF0idb_7jTkJqlYLgz7pMMt_USEzDTBTy9g3q6sI5h3tJzvpDj4RcA1sBSHUrFLNC8ZVQspDCnpCsMHYWTBQcjDwlC1DK5lwKeUGylD4ZY9waMIYtyNNmGjBW6zv6OmAzRtfRX7KPbvig5cHFhH3b72k90SqEOWl_MH_B1KbR9Q3SsvtOI8Y5uSLnwXUJs_9dkvd19VZu8u3zw2N5v80dl3bMnVdce4_aq8JrB1Ir4zUH55iUITQQLCAXtW2sd1hzKESAxhfIUGoGIJbk5u-3RcTdENsvF6cdMKatNVwcAZJRT4k
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549438
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10068872
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a248t-ad526dde6d59d6a14657d621aa044ffc1f81e23b8c8daeb2193f1cd9e0e460113
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-ad526dde6d59d6a14657d621aa044ffc1f81e23b8c8daeb2193f1cd9e0e460113
PageCount 9
ParticipantIDs ieee_primary_10068872
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.2774389
Snippet This paper introduces a scalable algorithmic framework (HyperEF) for spectral coarsening (decomposition) of large-scale hypergraphs by exploiting hyperedge...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Clustering algorithms
Clustering methods
Design automation
effective resistance
Estimation
graph clustering
hypergraph coarsening
Resistance
Runtime
Scalability
spectral graph theory
Title HyperEF: Spectral Hypergraph Coarsening by Effective-Resistance Clustering
URI https://ieeexplore.ieee.org/document/10068872
WOSCitedRecordID wos000981574300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60eNCLr4pv9uB1aze72YfX0lI8lCIKvZV9BQRppU0L_ntntrH24sFbGEIIm2Rmvsl-30fIQxk9VxpAjgFAy2T0klkdKyZiguoTVMFFyGYTejQyk4kdN2T1zIVJKeXNZ6mDh_lffpyHFY7K4AtHixQNGXdfa7Uha20HKtj6a3z5GrQFAdVo-XBZPooyNxsdAYBIIhtlx0wl15LB8T_v4oS0f1l5dLytN6dkL83OyNGOoOA5eR4CrFz0B08UfeVxiEFzJMtS094cUGzCQQj1X3SjWwzJjr2kJXaReP3exwqVE-CUNnkb9F97Q9a4JTBXSFMzF8tCQbJSsbRROciApY6w1s51payqwCvDUyG8CSY6wNPQuVU8RJu6SQIq4-KCtGbzWbokNKpgu04ILp2RPhiPLjDc2sC98lqFK9LGZZl-bgQxpj8rcv1H_IYcFsgagJRf2FvSqherdEcOwrp-Xy7u82P8Bv9GnQc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCurFV8W3OXhNzWYf2fVaWqrWUqRCb2VfAUHa0ofgv3dmG2svHryFIYSwSWbmm-z3fYTcCW-pLADkKAC0KfeWp7rwZcp8gOrjZE6Zi2YTRa-nhkPdr8jqkQsTQoibz0IDD-O_fD9xSxyVwReOFikFZNxtwXmereha65EKNv8Fvn4V3oKArNR8KBf3TMR2o8EAEnHko2zYqcRq0j74530ckvovLy_pryvOEdkK42OyvyEpeEKeOgAsZ632Q4LO8jjGSGIkClMnzQng2ICjkMR-JSvlYkh36WuYYx-J129-LFE7AU6pk7d2a9DspJVfQmpyrhap8SKXkK6kF9pLAzlQFB5W25iM87J0tFQ05Mwqp7wBRA29W0md1yELHHAZZaekNp6MwxlJvHQ6M4xRbhS3Tln0gaFaO2qlLaQ7J3VcltF0JYkx-lmRiz_it2S3M3jpjrqPvedLspcjhwAKQK6vSG0xW4ZrsuM-F-_z2U18pN9bKqBO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=HyperEF%3A+Spectral+Hypergraph+Coarsening+by+Effective-Resistance+Clustering&rft.au=Aghdaei%2C+Ali&rft.au=Feng%2C+Zhuo&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549438&rft.externalDocID=10068872