TransSizer: A Novel Transformer-Based Fast Gate Sizer
Gate sizing is a fundamental netlist optimization move and researchers have used supervised learning-based models in gate sizers. Recently, Reinforcement Learning (RL) has been tried for sizing gates (and other EDA optimization problems) but are very runtime-intensive. In this work, we explore a nov...
Saved in:
| Published in: | 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) pp. 1 - 9 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
ACM
29.10.2022
|
| Subjects: | |
| ISSN: | 1558-2434 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Gate sizing is a fundamental netlist optimization move and researchers have used supervised learning-based models in gate sizers. Recently, Reinforcement Learning (RL) has been tried for sizing gates (and other EDA optimization problems) but are very runtime-intensive. In this work, we explore a novel Transformer-based gate sizer, TransSizer, to directly generate optimized gate sizes given a placed and unoptimized netlist. TransSizer is trained on datasets obtained from real tapeout-quality industrial designs in a foundry 5nm technology node. Our results indicate that TransSizer achieves 97% accuracy in predicting optimized gate sizes at the postroute optimization stage. Furthermore, TransSizer has a speedup of ∼1400X while delivering similar timing, power and area metrics when compared to a leading-edge commercial tool for sizing-only optimization. |
|---|---|
| ISSN: | 1558-2434 |
| DOI: | 10.1145/3508352.3549442 |