Can Code Metrics Enhance Documentation Generation for Computational Notebooks?

In software development, code documentation is crucial for collaboration and maintenance, especially as projects become more complex. However, it is often neglected due to the tedious effort it requires. This paper explores automating documentation generation for computational notebooks, focusing on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 2472 - 2473
Hlavní autoři: Ghahfarokhi, Mojtaba Mostafavi, Jahantigh, Hamed, Kianiangolafshani, Sepehr, Khademian, Ashkan, Asadi, Alireza, Heydarnoori, Abbas
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 27.10.2024
Témata:
ISSN:2643-1572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In software development, code documentation is crucial for collaboration and maintenance, especially as projects become more complex. However, it is often neglected due to the tedious effort it requires. This paper explores automating documentation generation for computational notebooks, focusing on the impact of code metrics such as lines of code, API popularity, and complexity on this task. Using a dataset of 22K code-documentation pairs, we compare deep learning models with and without code metric augmentation. The results show that incorporating these metrics significantly improves the accuracy of documentation generation, underscoring the connection between code metrics and quality documentation.
ISSN:2643-1572
DOI:10.1145/3691620.3695334