A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer

Computational models can define the functional dynamics of complex systems in exceptional detail. However, many modeling studies face seemingly incommensurate requirements: to gain meaningful insights into some phenomena requires models with high resolution (microscopic) detail that must nevertheles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SC19: International Conference for High Performance Computing, Networking, Storage and Analysis S. 1 - 16
Hauptverfasser: Di Natale, Francesco, Neale, Chris, Stanton, Liam, Scogland, Thomas R. W., Yang, Yue, Costa, Carlos, Gnanakaran, Sandrasegaram, Lightstone, Felice C., Bhatia, Harsh, Schumacher, Sara Kokkila, Zhang, Xiaohua, Dharuman, Gautham, Misale, Claudia, Kim, Changhoan, Nissley, Dwight V., Bremer, Peer-Timo, Ingolfsson, Helgi I., Carpenter, Timothy S., Oppelstrup, Tomas, Sundram, Shiv, Surh, Michael P., Schneidenbach, Lars, D'Amora, Bruce, Streitz, Fred, Glosli, James N.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 17.11.2019
Schlagworte:
ISSN:2167-4337
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Computational models can define the functional dynamics of complex systems in exceptional detail. However, many modeling studies face seemingly incommensurate requirements: to gain meaningful insights into some phenomena requires models with high resolution (microscopic) detail that must nevertheless evolve over large (macroscopic) length- and time-scales. Multiscale modeling has become increasingly important to bridge this gap. Executing complex multiscale models on current petascale computers with high levels of parallelism and heterogeneous architectures is challenging. Many distinct types of resources need to be simultaneously managed, such as GPUs and CPUs, memory size and latencies, communication bottlenecks, and filesystem bandwidth. In addition, robustness to failure of compute nodes, network, and filesystems is critical. We introduce a first-of-its-kind, massively parallel Multiscale Machine-Learned Modeling Infrastructure (MuMMI), which couples a macro scale model spanning micrometer length- and millisec-ond time-scales with a micro scale model employing high-fidelity molecular dynamics (MD) simulations. MuMMI is a cohesive and transferable infrastructure designed for scalability and efficient execution on heterogeneous resources. A central workflow manager simultaneously allocates GPUs and CPUs while robustly han-dling failures in compute nodes, communication networks, and filesystems. A hierarchical scheduler controls GPU-accelerated MD simulations and in situ analysis. We present the various MUMMI components, including the macro model, GPU-accelerated MD, in situ analysis of MD data, machine learning selection module, a highly scalable hierarchical scheduler, and detail the central workflow manager that ties these modules together. In addition, we present performance data from our runs on Sierra, in which we validated MuMMI by investigating an experimentally intractable biological system: the dynamic interaction between RAS proteins and a plasma membrane. We used up to 4000 nodes of the Sierra supercomputer, concurrently utilizing over 16,000 GPUs and 176,000 CPU cores, and running up to 36,000 different tasks. This multiscale simulation includes about 120,000 MD simulations aggregating over 200 milliseconds, which is orders of magnitude greater than comparable studies.
AbstractList Computational models can define the functional dynamics of complex systems in exceptional detail. However, many modeling studies face seemingly incommensurate requirements: to gain meaningful insights into some phenomena requires models with high resolution (microscopic) detail that must nevertheless evolve over large (macroscopic) length- and time-scales. Multiscale modeling has become increasingly important to bridge this gap. Executing complex multiscale models on current petascale computers with high levels of parallelism and heterogeneous architectures is challenging. Many distinct types of resources need to be simultaneously managed, such as GPUs and CPUs, memory size and latencies, communication bottlenecks, and filesystem bandwidth. In addition, robustness to failure of compute nodes, network, and filesystems is critical. We introduce a first-of-its-kind, massively parallel Multiscale Machine-Learned Modeling Infrastructure (MuMMI), which couples a macro scale model spanning micrometer length- and millisec-ond time-scales with a micro scale model employing high-fidelity molecular dynamics (MD) simulations. MuMMI is a cohesive and transferable infrastructure designed for scalability and efficient execution on heterogeneous resources. A central workflow manager simultaneously allocates GPUs and CPUs while robustly han-dling failures in compute nodes, communication networks, and filesystems. A hierarchical scheduler controls GPU-accelerated MD simulations and in situ analysis. We present the various MUMMI components, including the macro model, GPU-accelerated MD, in situ analysis of MD data, machine learning selection module, a highly scalable hierarchical scheduler, and detail the central workflow manager that ties these modules together. In addition, we present performance data from our runs on Sierra, in which we validated MuMMI by investigating an experimentally intractable biological system: the dynamic interaction between RAS proteins and a plasma membrane. We used up to 4000 nodes of the Sierra supercomputer, concurrently utilizing over 16,000 GPUs and 176,000 CPU cores, and running up to 36,000 different tasks. This multiscale simulation includes about 120,000 MD simulations aggregating over 200 milliseconds, which is orders of magnitude greater than comparable studies.
Author Scogland, Thomas R. W.
Schumacher, Sara Kokkila
Nissley, Dwight V.
D'Amora, Bruce
Bremer, Peer-Timo
Zhang, Xiaohua
Sundram, Shiv
Misale, Claudia
Carpenter, Timothy S.
Gnanakaran, Sandrasegaram
Stanton, Liam
Bhatia, Harsh
Lightstone, Felice C.
Oppelstrup, Tomas
Schneidenbach, Lars
Streitz, Fred
Kim, Changhoan
Neale, Chris
Surh, Michael P.
Dharuman, Gautham
Glosli, James N.
Costa, Carlos
Ingolfsson, Helgi I.
Yang, Yue
Di Natale, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  surname: Di Natale
  fullname: Di Natale, Francesco
  email: dinatale3@llnl.gov
  organization: Applications, Simulations, and Quality, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 2
  givenname: Chris
  surname: Neale
  fullname: Neale, Chris
  email: cneale@lanl.gov
  organization: Los Alamos National Laboratory,Theoretical Biology and Biophysics,Los Alamos,New Mexico,87545
– sequence: 3
  givenname: Liam
  surname: Stanton
  fullname: Stanton, Liam
  email: liam.stanton@sjsu.edu
  organization: San Jose State University,Department of Mathematics and Statistics,San Jose,California,95192
– sequence: 4
  givenname: Thomas R. W.
  surname: Scogland
  fullname: Scogland, Thomas R. W.
  email: scogland1@llnl.gov
  organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing,Livermore,California,94550
– sequence: 5
  givenname: Yue
  surname: Yang
  fullname: Yang, Yue
  email: yang30@llnl.gov
  organization: Physical and Life Sciences, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 6
  givenname: Carlos
  surname: Costa
  fullname: Costa, Carlos
  email: chcost@us.ibm.com
  organization: IBM Thomas J. Watson Research Center,Yorktown Heights,New York,10598
– sequence: 7
  givenname: Sandrasegaram
  surname: Gnanakaran
  fullname: Gnanakaran, Sandrasegaram
  email: gnana@lanl.gov
  organization: Los Alamos National Laboratory,Theoretical Biology and Biophysics,Los Alamos,New Mexico,87545
– sequence: 8
  givenname: Felice C.
  surname: Lightstone
  fullname: Lightstone, Felice C.
  email: lightstone1@llnl.gov
  organization: Physical and Life Sciences, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 9
  givenname: Harsh
  surname: Bhatia
  fullname: Bhatia, Harsh
  email: hbhatia@llnl.gov
  organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing,Livermore,California,94550
– sequence: 10
  givenname: Sara Kokkila
  surname: Schumacher
  fullname: Schumacher, Sara Kokkila
  email: saraks@ibm.com
  organization: IBM Thomas J. Watson Research Center,Yorktown Heights,New York,10598
– sequence: 11
  givenname: Xiaohua
  surname: Zhang
  fullname: Zhang, Xiaohua
  email: zhang30@llnl.gov
  organization: Physical and Life Sciences, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 12
  givenname: Gautham
  surname: Dharuman
  fullname: Dharuman, Gautham
  email: dharuman1@Hnl.gov
  organization: Physical and Life Sciences, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 13
  givenname: Claudia
  surname: Misale
  fullname: Misale, Claudia
  email: c.misale@ibm.com
  organization: IBM Thomas J. Watson Research Center,Yorktown Heights,New York,10598
– sequence: 14
  givenname: Changhoan
  surname: Kim
  fullname: Kim, Changhoan
  email: ck624@hotmail.com
  organization: IBM Thomas J. Watson Research Center,Yorktown Heights,New York,10598
– sequence: 15
  givenname: Dwight V.
  surname: Nissley
  fullname: Nissley, Dwight V.
  email: nissleyd@mail.nih.gov
  organization: Frederick National Laboratory,Frederick,Maryland,21701
– sequence: 16
  givenname: Peer-Timo
  surname: Bremer
  fullname: Bremer, Peer-Timo
  email: bremer5@llnl.gov
  organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing,Livermore,California,94550
– sequence: 17
  givenname: Helgi I.
  surname: Ingolfsson
  fullname: Ingolfsson, Helgi I.
  email: ingolfsson1@llnl.gov
  organization: Physical and Life Sciences, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 18
  givenname: Timothy S.
  surname: Carpenter
  fullname: Carpenter, Timothy S.
  email: carpenter36@llnl.gov
  organization: Physical and Life Sciences, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 19
  givenname: Tomas
  surname: Oppelstrup
  fullname: Oppelstrup, Tomas
  email: oppelstrup2@llnl.gov
  organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing,Livermore,California,94550
– sequence: 20
  givenname: Shiv
  surname: Sundram
  fullname: Sundram, Shiv
  email: shivsundram@gmail.com
  organization: Applications, Simulations, and Quality, Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 21
  givenname: Michael P.
  surname: Surh
  fullname: Surh, Michael P.
  email: surh1@Hnl.gov
  organization: Lawrence Livermore National Laboratory,Center for Applied Scientific Computing,Livermore,California,94550
– sequence: 22
  givenname: Lars
  surname: Schneidenbach
  fullname: Schneidenbach, Lars
  email: schneidenbach@us.ibm.com
  organization: IBM Thomas J. Watson Research Center,Yorktown Heights,New York,10598
– sequence: 23
  givenname: Bruce
  surname: D'Amora
  fullname: D'Amora, Bruce
  email: damora@us.ibm.com
  organization: IBM Thomas J. Watson Research Center,Yorktown Heights,New York,10598
– sequence: 24
  givenname: Fred
  surname: Streitz
  fullname: Streitz, Fred
  email: streitz1@llnl.gov
  organization: Lawrence Livermore National Laboratory,Livermore,California,94550
– sequence: 25
  givenname: James N.
  surname: Glosli
  fullname: Glosli, James N.
  email: glosli1@llnl.gov
  organization: Physical and Life Sciences, Lawrence Livermore National Laboratory,Livermore,California,94550
BookMark eNotzDtPwzAYhWGDQKKUziwM_gMpn-04dtiiikulViAKc-X4AkZuUtkOqP-eqDCd4T16LtFZ13cWoWsCc0JKfstozTnAnDFekVqcoFkt5BiAVZTWcIomlFSiKBkTF2iW0hcAMAolkTBBqcFrlZL_tuGAX1RUIdiAl52LKuU46DxEi10fcWPUPo83vB5C9kmrYPHG74agsu-7dIfXvbHBdx_4tdmMgM_-WEY0f_6owxFZqE7beIXOnQrJzv53it4f7t8WT8Xq-XG5aFaFoqXMhQDniJEgCFOiZHXrDG95pbSU2rZStpUpQUtuRa1aQzU3lpXM2Uow4YzUbIpu_lxvrd3uo9-peNgSqIHSirBfmoVe1w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3295500.3356197
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781450362290
145036229X
EISSN 2167-4337
EndPage 16
ExternalDocumentID 10902261
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-a248t-70ff1d80713a7439bfd5b56ac88ceb88b6d40c85e79abd2c5de343fe6737fd8c3
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545976800057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Mar 12 06:17:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-70ff1d80713a7439bfd5b56ac88ceb88b6d40c85e79abd2c5de343fe6737fd8c3
PageCount 16
ParticipantIDs ieee_primary_10902261
PublicationCentury 2000
PublicationDate 2019-Nov.-17
PublicationDateYYYYMMDD 2019-11-17
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.-17
  day: 17
PublicationDecade 2010
PublicationTitle SC19: International Conference for High Performance Computing, Networking, Storage and Analysis
PublicationTitleAbbrev SC
PublicationYear 2019
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0003204180
ssj0002871321
Score 2.0218446
Snippet Computational models can define the functional dynamics of complex systems in exceptional detail. However, many modeling studies face seemingly incommensurate...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
adaptive simulations
Analytical models
Biological system modeling
cancer research
Computational modeling
heterogenous architecture
machine learning
massively parallel
multiscale simulations
Parallel processing
Plasmas
Proteins
Robustness
Scalability
Supercomputers
Title A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer
URI https://ieeexplore.ieee.org/document/10902261
WOSCitedRecordID wos000545976800057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmAqjyLe8sAamjhxY7NVFRVIUFUUpG6VH2dRqbRV2oL67zk7aREDA1sSWafoLvZ95_i7j5AbiB1nNtGRQ6wcZQxMpF1iIyc1OK41UzZ013_Kez0xHMp-RVYPXBgACIfP4NZfhn_5dmZWfqusGQ4RMl_s7OZ5qyRrbTdUPPRPq1zk71MWZ4mIq3Y-ScabKZOIx7FMTRE0yN96KiGddOv_fJED0vgh5tH-NuUckh2YHpH6RpmBVhP1mCza9BlRMa5kkzXtq8ILpkzo49QVqmwYuyqAIlylbavmfsGjgYi7wIABHYw_Kk2vxR31WmmesU5f2gM0MF6WoUSjy_cvtQ5GOv7LKRrkrXv_2nmIKnmFSLFMLKM8dhgV4ctU5csS7SzXvKWMEAa0ELpls9gIDrlU2jLDLaRZ6sAr2zgrTHpCatPZFE4JzbTVOAxNcM-tFwItYmqERIJMuMjPSMM7cTQvO2iMNv47_-P5BdlHYCI95y_JL0kNPQNXZM98oieK6xD3b079r8E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yCnpaHyu-zcFrtU0bm3hbRFFcl8UHeFvymKCgVbq7iv_emWxX8eDBW1vKUGbSzDdJvvkYO4A0SOEzmwTEykkhwCU2ZD4J2kKQ1grjY3f9Xtnvq4cHPWjI6pELAwDx8Bkc0mXcy_evbkJLZUfxEKGgYmeepLMautb3kgqB_7zJRnSfi7TIVNo09MkKeZQLjYgcC9UcYYP-ragSE8p5-5-fssw6P9Q8PvhOOitsDqpV1p5pM_DmV11joy6_RlyMc9nzJx-YmiRTnvllFWozbRk7qYEjYOVdb95oyuORijvCkAG_fXppVL1GJ5zU0oizzm-6t2jgaTwNJhodP36Yz2jklMZO3WH352d3pxdJI7CQGFGocVKmAeOiqFA1VJjY4KWVx8Yp5cAqZY99kTolodTGeuGkh7zIA5C2TfDK5eusVb1WsMF4Yb3F19CEJHa9UmgRkyNkGnQmVbnJOuTE4du0h8Zw5r-tP57vs8WLu-vesHfZv9pmSwhTNDEAs3KHtdBLsMsW3Dt6pd6LY-ALpA-zCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC19%3A+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=A+Massively+Parallel+Infrastructure+for+Adaptive+Multiscale+Simulations%3A+Modeling+RAS+Initiation+Pathway+for+Cancer&rft.au=Di+Natale%2C+Francesco&rft.au=Neale%2C+Chris&rft.au=Stanton%2C+Liam&rft.au=Scogland%2C+Thomas+R.+W.&rft.date=2019-11-17&rft.pub=ACM&rft.eissn=2167-4337&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1145%2F3295500.3356197&rft.externalDocID=10902261