Workspace Optimization Techniques to Improve Prediction of Human Motion During Human-Robot Collaboration

Understanding human intentions is critical for safe and effective human-robot collaboration. While state of the art methods for human goal prediction utilize learned models to account for the uncertainty of human motion data, that data is inherently stochastic and high variance, hindering those mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) S. 743 - 751
Hauptverfasser: Tung, Yi-Shiuan, Luebbers, Matthew B., Roncone, Alessandro, Hayes, Bradley
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 11.03.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Understanding human intentions is critical for safe and effective human-robot collaboration. While state of the art methods for human goal prediction utilize learned models to account for the uncertainty of human motion data, that data is inherently stochastic and high variance, hindering those models' utility for interactions requiring coordination, including safety-critical or close-proximity tasks. Our key insight is that robot teammates can deliberately configure shared workspaces prior to interaction in order to reduce the variance in human motion, realizing classifier-agnostic improvements in goal prediction. In this work, we present an algorithmic approach for a robot to arrange physical objects and project "virtual obstacles" using augmented reality in shared human-robot workspaces, optimizing for human legibility over a given set of tasks. We compare our approach against other workspace arrangement strategies using two human-subjects studies, one in a virtual 2D navigation domain and the other in a live tabletop manipulation domain involving a robotic manipulator arm. We evaluate the accuracy of human motion prediction models learned from each condition, demonstrating that our workspace optimization technique with virtual obstacles leads to higher robot prediction accuracy using less training data.CCS CONCEPTS* Computing methodologies → Robotic planning; Planning under uncertainty; * Human-centered computing → Mixed / augmented reality.
AbstractList Understanding human intentions is critical for safe and effective human-robot collaboration. While state of the art methods for human goal prediction utilize learned models to account for the uncertainty of human motion data, that data is inherently stochastic and high variance, hindering those models' utility for interactions requiring coordination, including safety-critical or close-proximity tasks. Our key insight is that robot teammates can deliberately configure shared workspaces prior to interaction in order to reduce the variance in human motion, realizing classifier-agnostic improvements in goal prediction. In this work, we present an algorithmic approach for a robot to arrange physical objects and project "virtual obstacles" using augmented reality in shared human-robot workspaces, optimizing for human legibility over a given set of tasks. We compare our approach against other workspace arrangement strategies using two human-subjects studies, one in a virtual 2D navigation domain and the other in a live tabletop manipulation domain involving a robotic manipulator arm. We evaluate the accuracy of human motion prediction models learned from each condition, demonstrating that our workspace optimization technique with virtual obstacles leads to higher robot prediction accuracy using less training data.CCS CONCEPTS* Computing methodologies → Robotic planning; Planning under uncertainty; * Human-centered computing → Mixed / augmented reality.
Author Roncone, Alessandro
Hayes, Bradley
Tung, Yi-Shiuan
Luebbers, Matthew B.
Author_xml – sequence: 1
  givenname: Yi-Shiuan
  surname: Tung
  fullname: Tung, Yi-Shiuan
  email: yi-shiuan.tung@colorado.edu
  organization: University of Colorado Boulder,Boulder,USA
– sequence: 2
  givenname: Matthew B.
  surname: Luebbers
  fullname: Luebbers, Matthew B.
  email: matthew.luebbers@colorado.edu
  organization: University of Colorado Boulder,Boulder,USA
– sequence: 3
  givenname: Alessandro
  surname: Roncone
  fullname: Roncone, Alessandro
  email: alessandro.roncone@colorado.edu
  organization: University of Colorado Boulder,Boulder,USA
– sequence: 4
  givenname: Bradley
  surname: Hayes
  fullname: Hayes, Bradley
  email: bradley.hayes@colorado.edu
  organization: University of Colorado Boulder,Boulder,USA
BookMark eNotjk1Lw0AYhFdQUGvOXjzsH0h99zPZo8SPFioVqXgsm-SNXUyycZMI-usNqZcZ5mEY5pKctr5FQq4ZLBmT6lZoBiZJlkILBSBOSGQSk0qABATn6pxEfe9yUNIwkCq9IId3Hz77zhZIt93gGvdrB-dbusPi0LqvEXs6eLpuuuC_kb4ELF0xF3xFV2NjW_rs53w_Btd-HFn86nM_0MzXtc19mBevyFll6x6jf1-Qt8eHXbaKN9undXa3iS2X6RDrgiNMojXqKmeqwhxzVSWVKrmZqEYreMqn_xyNtsqABpRpqnmJWJpELMjNcdch4r4LrrHhZ89Aa8ZAiD87T1jH
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3610977.3635003
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400703225
EndPage 751
ExternalDocumentID 10661103
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research
  funderid: 10.13039/100000006
– fundername: Army Research Laboratory
  funderid: 10.13039/100006754
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a248t-6c2e06c266e6fb15febeb5f7f5d292666ea32824912e96a59060e48862deed973
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001239977500079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue May 06 03:31:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-6c2e06c266e6fb15febeb5f7f5d292666ea32824912e96a59060e48862deed973
PageCount 9
ParticipantIDs ieee_primary_10661103
PublicationCentury 2000
PublicationDate 2024-March-11
PublicationDateYYYYMMDD 2024-03-11
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-11
  day: 11
PublicationDecade 2020
PublicationTitle 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
PublicationTitleAbbrev HRI
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib054910458
Score 1.9069101
Snippet Understanding human intentions is critical for safe and effective human-robot collaboration. While state of the art methods for human goal prediction utilize...
SourceID ieee
SourceType Publisher
StartPage 743
SubjectTerms Accuracy
Adaptation models
augmented reality
Collaboration
environment adaptation
human-robot collaboration
legibility
motion prediction
Prediction algorithms
Predictive models
Robot kinematics
Uncertainty
Title Workspace Optimization Techniques to Improve Prediction of Human Motion During Human-Robot Collaboration
URI https://ieeexplore.ieee.org/document/10661103
WOSCitedRecordID wos001239977500079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBDf8sDqktixncyFigFKhQrqVtnxWTDQoDbt7-fspNCFgSWKLominH1-uTu_O0JucNEvPPeBfmYFywujmXHasQrRIdcWQT-283l71KNRMZ2W446sHrkwABA3n0E_nMZcvqurVQiVoYUjmmShtueu1rola20mD_o5WUj6deV7slzeilBKXOu-QFBNQ1esrf4pET6GB_988SFJfol4dPwDMUdkB-bH5D0EuHEhwGvPaPCfHZOSTjblWJe0qWkbLQiPh1RMvKH2NMbs6VNs3UPvIkWxlbGX2tYNHWxPi4S8Du8ngwfWNUxghudFw1TFIcWDUqC8zaTHEbLSay8dL1GqwAh0sVBTHEplZJmqFNCCFXf4HaUWJ6Q3r-dwSqhw6NlYC05KnafCGqOkq0J5Mec8FO6MJEFNs6-2JsZso6HzP-QXZJ_j70DYvZVll6TXLFZwRfaqdfOxXFzHkfwG5DGhLg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQQYIJEEV844HVJbZjO5kLVRFtqVBB3So7tgUDDWpTfj9nJ4UuDCxRdEkU5ezzy9353SF0A4t-5pkP9DPDSZppRbRVlhSADqkyAPqxnc_rQI1G2XSajxuyeuTCOOfi5jPXCacxl2_LYhVCZWDhgCY01PbcFmnKaE3XWk8f8HRoSPs1BXxoKm55KCauVIcDrCahL9ZGB5UIIL39f776ALV_qXh4_AMyh2jLzY_QWwhxw1IA157A5D8aLiWerAuyLnFV4jpeEB4PyZh4Q-lxjNrjYWzeg-8iSbGWkefSlBXubk6MNnrp3U-6fdK0TCCapVlFZMFcAgcpnfSGCg9jZIRXXliWg1Q6zcHJAk0xl0st8kQmDmxYMgvfkSt-jFrzcu5OEOYWfBtjnBVCpQk3Wkthi1BgzFrvMnuK2kFNs8-6KsZsraGzP-TXaLc_GQ5mg4fR4znaY_BzEPZyUXqBWtVi5S7RTvFVvS8XV3FUvwFysKR1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+19th+ACM%2FIEEE+International+Conference+on+Human-Robot+Interaction+%28HRI%29&rft.atitle=Workspace+Optimization+Techniques+to+Improve+Prediction+of+Human+Motion+During+Human-Robot+Collaboration&rft.au=Tung%2C+Yi-Shiuan&rft.au=Luebbers%2C+Matthew+B.&rft.au=Roncone%2C+Alessandro&rft.au=Hayes%2C+Bradley&rft.date=2024-03-11&rft.pub=ACM&rft.spage=743&rft.epage=751&rft_id=info:doi/10.1145%2F3610977.3635003&rft.externalDocID=10661103