Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency

Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deploym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) S. 1 - 9
Hauptverfasser: Yang, Zhao, Sun, Qingshuang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 29.10.2022
Schlagworte:
ISSN:1558-2434
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deployment at the edge are severely impacted by heterogeneous data and heterogeneous systems. In this paper, we perform joint FL model personalization for heterogeneous systems and heterogeneous data to address the challenges posed by heterogeneities. We begin by using model inference efficiency as a starting point to personalize network scale on each node. Furthermore, it can be used to guide the efficient FL training process, which can help to ease the problem of straggler devices and improve FL's energy efficiency. During FL training, federated search is then used to acquire highly accurate personalized network structures. By taking into account the unique characteristics of FL deployment at edge devices, the personalized network structures obtained by our federated search framework with a lightweight search controller can achieve competitive accuracy with state-of-the-art (SOTA) methods, while reducing inference and training energy consumption by up to 3.57× and 1.82×, respectively.
AbstractList Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deployment at the edge are severely impacted by heterogeneous data and heterogeneous systems. In this paper, we perform joint FL model personalization for heterogeneous systems and heterogeneous data to address the challenges posed by heterogeneities. We begin by using model inference efficiency as a starting point to personalize network scale on each node. Furthermore, it can be used to guide the efficient FL training process, which can help to ease the problem of straggler devices and improve FL's energy efficiency. During FL training, federated search is then used to acquire highly accurate personalized network structures. By taking into account the unique characteristics of FL deployment at edge devices, the personalized network structures obtained by our federated search framework with a lightweight search controller can achieve competitive accuracy with state-of-the-art (SOTA) methods, while reducing inference and training energy consumption by up to 3.57× and 1.82×, respectively.
Author Sun, Qingshuang
Yang, Zhao
Author_xml – sequence: 1
  givenname: Zhao
  surname: Yang
  fullname: Yang, Zhao
  email: yz70528@mail.nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Computer Science
– sequence: 2
  givenname: Qingshuang
  surname: Sun
  fullname: Sun, Qingshuang
  email: qingshuang.sun@vub.be
  organization: Vrije Universiteit Brussel,Faculty of Science and Bio-Engineering Sciences
BookMark eNotj81Kw0AYRUdRsNas3biYF0id_59lLa0VCgrWdZh886VG6kQmEYlP34CuLtxzOXCvyUXqEhJyy9mCc6XvpWZOarGQWnnF5BkpvHUTYNILbtU5mXGtXSmUVFek6PsPxphwllvLZqR6wdx3KRzbX4x0iwPm7oAJ22Esw0_ISDcYMYdhoq8YMrzTfTf1sacPOExrugT4zgFGGlKk64T5MNJ107TQYoLxhlw24dhj8Z9z8rZZ71fbcvf8-LRa7soglBtKHYIBUXvDLEThjGJRIofpjjS-id7WtRFOoIgWmtpL5mMjJZgYHdQWvJyTuz9vi4jVV24_Qx4rzpjxerKcAJkBV0w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549403
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10069540
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a248t-5aa6c2b9607cd28640d3e1c403369fd97bb6282e2d7cfb9309df33c6dd8cb7c93
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-5aa6c2b9607cd28640d3e1c403369fd97bb6282e2d7cfb9309df33c6dd8cb7c93
PageCount 9
ParticipantIDs ieee_primary_10069540
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.220749
Snippet Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Computational modeling
Data models
Energy consumption
energy efficiency
Federated learning
federated search
heterogeneity-aware personalization
Performance evaluation
Process control
Training
Title Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency
URI https://ieeexplore.ieee.org/document/10069540
WOSCitedRecordID wos000981574300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sDqksSOHY-AWnWqOhSpW2WfHYklRWlLBb-es5OWLgxslr1Y58d9Z9_3HSGPqUtTg3ceA2sNEwYSZjgXLEjRydx67cqm2IQaj4vZTE9asnrkwnjvY_KZ74dm_Mt3C1iHpzI84YnUCDE6pKOUashauweVAP1V2HxttIUdstXySUX-xPMINvocAyIRSmTtFVOJvmR48s9ZnJLeLyuPTnb-5owc-OqcHO8JCl6Q-WSLrb-9o6OQ6rLAHeIRajOzMbWnwyAegfjS0SbRmE5j3uySvkReD30GWNcGvqipHB1EYiAdRJmJwNHskbfhYPo6Ym0JBWYyUaxYboyEzGKYosChQUTiuE8BDcClLp1W1koMunzmFJRW8wTXhnOQzhVgFWh-SbrVovJXhAI6cqULJaQphcoS43EY7wRQnGvvkmvSC7aafzQqGfOtmW7-6L8lR1mgEqAfyPQd6a7qtb8nh_C5el_WD3FtfwDRzKTG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAELryLeeGB1SWLHjkdArYooVYcidYv8isSSorQFwa_n7KSlCwObZS_W-XHf2fd9h9BtbONYwZ1HjNaKMGUioihlxEvR8VQ7aYu62IQYDrPJRI4asnrgwjjnQvKZ6_hm-Mu3U7PwT2VwwiMuAWJsoq2UsSSu6VqrJxUP_oXffk28BR28UfOJWXpH0wA3OhRCIuaLZK2VUwnepLf_z3kcoPYvLw-PVh7nEG248gjtrUkKHqN8tETX387ivk92mcIecQC2ifpUlcM9Lx8BCNPiOtUYj0Pm7Aw_BGYPvjdmUSnzhVVpcTdQA3E3CE14lmYbvfa648c-aYooEJWwbE5SpbhJNAQqwlgwCIssdbEBA1AuCyuF1hzCLpdYYQotaQSrQ6nh1mZGCyPpCWqV09KdImzAlQuZCcZVwUQSKQfDcCsYQal0NjpDbW-r_L3WyciXZjr_o_8G7fTHL4N88DR8vkC7iScWgFdI5CVqzauFu0Lb5mP-Nquuwzr_AJMHqA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=Personalized+Heterogeneity-aware+Federated+Search+Towards+Better+Accuracy+and+Energy+Efficiency&rft.au=Yang%2C+Zhao&rft.au=Sun%2C+Qingshuang&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549403&rft.externalDocID=10069540