Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency
Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deploym...
Gespeichert in:
| Veröffentlicht in: | 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) S. 1 - 9 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
ACM
29.10.2022
|
| Schlagworte: | |
| ISSN: | 1558-2434 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deployment at the edge are severely impacted by heterogeneous data and heterogeneous systems. In this paper, we perform joint FL model personalization for heterogeneous systems and heterogeneous data to address the challenges posed by heterogeneities. We begin by using model inference efficiency as a starting point to personalize network scale on each node. Furthermore, it can be used to guide the efficient FL training process, which can help to ease the problem of straggler devices and improve FL's energy efficiency. During FL training, federated search is then used to acquire highly accurate personalized network structures. By taking into account the unique characteristics of FL deployment at edge devices, the personalized network structures obtained by our federated search framework with a lightweight search controller can achieve competitive accuracy with state-of-the-art (SOTA) methods, while reducing inference and training energy consumption by up to 3.57× and 1.82×, respectively. |
|---|---|
| AbstractList | Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deployment at the edge are severely impacted by heterogeneous data and heterogeneous systems. In this paper, we perform joint FL model personalization for heterogeneous systems and heterogeneous data to address the challenges posed by heterogeneities. We begin by using model inference efficiency as a starting point to personalize network scale on each node. Furthermore, it can be used to guide the efficient FL training process, which can help to ease the problem of straggler devices and improve FL's energy efficiency. During FL training, federated search is then used to acquire highly accurate personalized network structures. By taking into account the unique characteristics of FL deployment at edge devices, the personalized network structures obtained by our federated search framework with a lightweight search controller can achieve competitive accuracy with state-of-the-art (SOTA) methods, while reducing inference and training energy consumption by up to 3.57× and 1.82×, respectively. |
| Author | Sun, Qingshuang Yang, Zhao |
| Author_xml | – sequence: 1 givenname: Zhao surname: Yang fullname: Yang, Zhao email: yz70528@mail.nwpu.edu.cn organization: Northwestern Polytechnical University,School of Computer Science – sequence: 2 givenname: Qingshuang surname: Sun fullname: Sun, Qingshuang email: qingshuang.sun@vub.be organization: Vrije Universiteit Brussel,Faculty of Science and Bio-Engineering Sciences |
| BookMark | eNotj81Kw0AYRUdRsNas3biYF0id_59lLa0VCgrWdZh886VG6kQmEYlP34CuLtxzOXCvyUXqEhJyy9mCc6XvpWZOarGQWnnF5BkpvHUTYNILbtU5mXGtXSmUVFek6PsPxphwllvLZqR6wdx3KRzbX4x0iwPm7oAJ22Esw0_ISDcYMYdhoq8YMrzTfTf1sacPOExrugT4zgFGGlKk64T5MNJ107TQYoLxhlw24dhj8Z9z8rZZ71fbcvf8-LRa7soglBtKHYIBUXvDLEThjGJRIofpjjS-id7WtRFOoIgWmtpL5mMjJZgYHdQWvJyTuz9vi4jVV24_Qx4rzpjxerKcAJkBV0w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3508352.3549403 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781450392174 1450392172 |
| EISSN | 1558-2434 |
| EndPage | 9 |
| ExternalDocumentID | 10069540 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO FEDTE IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a248t-5aa6c2b9607cd28640d3e1c403369fd97bb6282e2d7cfb9309df33c6dd8cb7c93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:46:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a248t-5aa6c2b9607cd28640d3e1c403369fd97bb6282e2d7cfb9309df33c6dd8cb7c93 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_10069540 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct.-29 |
| PublicationDateYYYYMMDD | 2022-10-29 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) |
| PublicationTitleAbbrev | ICCAD |
| PublicationYear | 2022 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0002871770 ssj0020286 |
| Score | 2.220749 |
| Snippet | Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Computational modeling Data models Energy consumption energy efficiency Federated learning federated search heterogeneity-aware personalization Performance evaluation Process control Training |
| Title | Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency |
| URI | https://ieeexplore.ieee.org/document/10069540 |
| WOSCitedRecordID | wos000981574300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sDqksSOHY-AWnWqOhSpW2WfHYklRWlLBb-es5OWLgxslr1Y58d9Z9_3HSGPqUtTg3ceA2sNEwYSZjgXLEjRydx67cqm2IQaj4vZTE9asnrkwnjvY_KZ74dm_Mt3C1iHpzI84YnUCDE6pKOUashauweVAP1V2HxttIUdstXySUX-xPMINvocAyIRSmTtFVOJvmR48s9ZnJLeLyuPTnb-5owc-OqcHO8JCl6Q-WSLrb-9o6OQ6rLAHeIRajOzMbWnwyAegfjS0SbRmE5j3uySvkReD30GWNcGvqipHB1EYiAdRJmJwNHskbfhYPo6Ym0JBWYyUaxYboyEzGKYosChQUTiuE8BDcClLp1W1koMunzmFJRW8wTXhnOQzhVgFWh-SbrVovJXhAI6cqULJaQphcoS43EY7wRQnGvvkmvSC7aafzQqGfOtmW7-6L8lR1mgEqAfyPQd6a7qtb8nh_C5el_WD3FtfwDRzKTG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAELryLeeGB1SWLHjkdArYooVYcidYv8isSSorQFwa_n7KSlCwObZS_W-XHf2fd9h9BtbONYwZ1HjNaKMGUioihlxEvR8VQ7aYu62IQYDrPJRI4asnrgwjjnQvKZ6_hm-Mu3U7PwT2VwwiMuAWJsoq2UsSSu6VqrJxUP_oXffk28BR28UfOJWXpH0wA3OhRCIuaLZK2VUwnepLf_z3kcoPYvLw-PVh7nEG248gjtrUkKHqN8tETX387ivk92mcIecQC2ifpUlcM9Lx8BCNPiOtUYj0Pm7Aw_BGYPvjdmUSnzhVVpcTdQA3E3CE14lmYbvfa648c-aYooEJWwbE5SpbhJNAQqwlgwCIssdbEBA1AuCyuF1hzCLpdYYQotaQSrQ6nh1mZGCyPpCWqV09KdImzAlQuZCcZVwUQSKQfDcCsYQal0NjpDbW-r_L3WyciXZjr_o_8G7fTHL4N88DR8vkC7iScWgFdI5CVqzauFu0Lb5mP-Nquuwzr_AJMHqA0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=Personalized+Heterogeneity-aware+Federated+Search+Towards+Better+Accuracy+and+Energy+Efficiency&rft.au=Yang%2C+Zhao&rft.au=Sun%2C+Qingshuang&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549403&rft.externalDocID=10069540 |